2ちゃんねる ★スマホ版★ ■掲示板に戻る■ 全部 1- 最新50  

■ このスレッドは過去ログ倉庫に格納されています

分からない問題はここに書いてね207

1 :132人目の素数さん:2005/03/25(金) 21:47:58
さあ、今日も1日頑張ろう★☆

前スレ
分からない問題はここに書いてね206
http://science3.2ch.net/test/read.cgi/math/1110879202/


2 :132人目の素数さん:2005/03/25(金) 21:50:46
>>1


3 :132人目の素数さん:2005/03/25(金) 22:50:26
sin(nθ)/cosθ^n と cos(nθ)/cosθ^n がtanθの多項式で
表せることを示せって問題をどなたかさばいてくれませんか…

4 :132人目の素数さん:2005/03/25(金) 22:51:52
帰納法で

5 :132人目の素数さん:2005/03/25(金) 22:56:40
>>3
ずっと推定しようとがんばってました。。。どうもありがとうございます

6 :132人目の素数さん:2005/03/25(金) 23:38:16
不等式の証明方法で移行するとあーだこーだで証明たことになるらしいですが意味不明なので質問させて頂きます。

|a|≧−aが常に成り立つ事を証明せよ。

解説では
a≧0のとき|a|=a
|a|≧−a
a+a≧0
2a≧0
よって|a|=−aは成り立つ。

2a≧0だと何故に|a|≧−aが成り立つんですか?
自分なりに色々と考えてみたけど解りません。

取り敢えず僕の考え方を書いておきますね。
a≧0というのはa=0かa>0。
|a|≧−aというのは|a|=−aか|a|>−a
いづれにせよaが0以上であれば成り立つ。
ということですか?

7 : ◆27Tn7FHaVY :2005/03/25(金) 23:42:13
a≧0ならば

|a|-(-a) = a-(-a)=2a≧0
∴|a|≧-a|

8 : ◆27Tn7FHaVY :2005/03/25(金) 23:49:37
>>6
その解説では確かに解りにくいけど、下から上にいくように読んでいく

9 :3:2005/03/26(土) 00:24:41
>>3
このときsin(nθ)/cosθ^nをPn(tanθ)、cos(nθ)/cosθ^nをQn(tanθ)とおくと
Pn'(x)=n*Qn-1(x) ,Qn'(x)=-n*Pn-1(x)を示せってのを・・・
再び誰かお願いします

10 :ダイ生伊藤:2005/03/26(土) 03:15:05
おんしゃーす
(a^2+y^2)^(-2/3)の不定積分を!

ドウゾよろしくお願いします

11 :132人目の素数さん:2005/03/26(土) 08:25:40

Σ{1/(K^K)}
K=1

n→∞

の値はどうなるのでしょうか。

12 :132人目の素数さん:2005/03/26(土) 09:13:13
K^-K=e^-klogk


13 :132人目の素数さん:2005/03/26(土) 09:15:11
(a^2+y^2)^(-2/3)=(a^-4/3)(1+(y/a)^2)^-2/3

14 :132人目の素数さん:2005/03/26(土) 09:17:56
sin(nθ)/cosθ^n=(e^int-e^-int)(-i)(e^it+e^it)^-n

15 :132人目の素数さん:2005/03/26(土) 09:40:31
アンカー付けて欲しい

16 :132人目の素数さん:2005/03/26(土) 10:36:12
http://pukapuka.s1.x-beat.com/img-box/img20050326012038.jpg
これ答え出るの?

17 :132人目の素数さん:2005/03/26(土) 11:36:15
∠ADC=arcsin(1/√{1+(√3-cot(40°))^2})≒61.6°

18 :132人目の素数さん:2005/03/26(土) 18:31:51
|a|≧−a と2a≧0ってどういう関係が有るの?

何で2a≧0が言えれば|a|≧−aがいえるのですか?

19 :132人目の素数さん:2005/03/26(土) 18:55:53
|a|≧−a ⇔|a|+a≧0
  2a≧0  ⇔   a+a≧0

|a|+a≧a+a だから下のがきつい条件

20 :132人目の素数さん:2005/03/26(土) 20:44:32
>18,19
というか、|a|≧-a は恒等式だが。

21 :132人目の素数さん:2005/03/26(土) 20:48:20
ガ――(;´Д`)――ン

22 :BlackLightOfStar ◆ifsBJ/KedU :2005/03/26(土) 21:03:14
Re:>20 どこに等式があるんだよ?

23 :132人目の素数さん:2005/03/26(土) 21:31:22
>>3
sin(nθ)/{(cosθ)^n} =S_n と cos(nθ)/{(cosθ)^n} =C_n とおくと, [>>4]より
S_1=tanθ, S_{n+1} = S_n + C_n・tanθ,
C_1=1, C_{n+1} = C_n - S_n・tanθ.
たぶん整係数...

>>11
Σ[K=1,∞) 1/(K^K) = ∫_[0,1] 1/(x^x) dx = 1.29128599706266354040…
(ベルヌーイらしい)

M.R.スピーゲル 著, 氏家勝巳 訳 「数学公式・数表ハンドブック」 マグロウヒル p.100 [15.119] (1984.9.1)

24 :20:2005/03/26(土) 21:34:06
>22
というか、|a|≧-a は絶対不等式ですた。

25 :132人目の素数さん:2005/03/26(土) 21:43:29
>>22
|a|≧-a

∀n∈N,∃α≧0,((-1)^n)*a + α = -a

とか言ってみる

26 :BlackLightOfStar ◆ifsBJ/KedU :2005/03/26(土) 22:02:40
Re:>25 そのαとは-((-1)^n)*a-aだが、それは負の数になることもあるぞ。何考えてんだよ?

27 :132人目の素数さん:2005/03/26(土) 22:04:43
αつけるの逆だった…; 何も考えてなかったよ?

28 :132人目の素数さん:2005/03/26(土) 22:14:10
>>17
なんでそうなるの?

29 :132人目の素数さん:2005/03/26(土) 22:14:19
cos(nθ)+isin(nθ)=(cosθ+isinθ)^nを利用したら?
{cos(nθ)+isin(nθ)}/(cosθ^n)=(1+itanθ)^n
よって、
cos(nθ)/(cosθ^n)=1-n(n-1)/2・tanθ^2+n(n-1)(n-2)(n-3)/24・tanθ^4+・・・

sin(nθ)/(cosθ^n)=n・tanθ -n(n-1)(n-2)/6・tanθ^3+・・・



30 :11:2005/03/26(土) 22:17:42
>>23
そうなんだ!ありがとう、今朝トイレでうんこしてて
この式を思いついたんだが1.3まではいかないのか・・・

31 :132人目の素数さん:2005/03/26(土) 22:53:19
>>3
 sin(nθ)/{(cosθ)^n} = P_n(tanθ), cos(nθ)/{(cosθ)^n} = Q_n(tanθ) とおくと
 P_1(x)=x, A_n ≡ P_n - P_{n-1} - x・Q_{n-1} = 0.
 Q_1(x)=1, B_n ≡ Q_n - Q_{n-1} + x・P_{n-1} = 0.
 ∴ P_n(x), Q_n(x) は整多項式。(n-1 〜 n次)

>>9
 F_n = P_n '- n・Q_{n-1}, G_n = Q_n '+ n・P_{n-1} とおくと, F_1(x)=0, G_1(x)=0.
 F_{n+1} ≡ P_{n+1} '- (n+1)Q_n = (A_{n+1}) '+ F_n - n・B_n + x・G_n = F_n + x・G_n.
 G_{n+1} ≡ Q_{n+1} '+ (n+1)P_n = (B_{n+1}) '+ G_n + n・A_n - x・F_n = G_n - x・F_n.
 nに関する帰納法により F_n(x)=0, G_n(x)=0.

32 :132人目の素数さん :2005/03/26(土) 22:54:22
質問です。

整列集合には「直前の元」があるとは限らないことは知っていますが、
「直後の元」についてはどうなんでしょうか?
できれば具体例もいっしょにお願いします。

33 :132人目の素数さん:2005/03/26(土) 23:14:16
>>28
とりあえずBC=1とする。∠A=40゚だから△ABCについて正弦定理より、BC/sin(40゚)=AB/sin(50゚)
⇔ AB=sin(50゚)/sin(40゚)=cot(40゚)、また△BCDについて正弦定理より、BC/sin(30゚)=CD/sin(60゚)
⇔ CD=√3、ここでAからCDに対する垂線の交点をFとすると、AF=BC=1、DF^2+(CD-AB)^2=AD^2、
AD=√(1+{√3-cot(40゚)}^2)、AF/AD=sin(∠ADC) ⇔ ∠ADC=arcsin(1/√{1+(√3-cot(40゚))^2})≒61.6°

34 :132人目の素数さん:2005/03/26(土) 23:14:29
min{x|a<x}がaの直後の元。
(これが存在することは定義より明らか)
ただし{x|a<x}=φのときは存在しない。

35 :132人目の素数さん:2005/03/26(土) 23:23:19
>>34
即レス、サンクスです!

36 :132人目の素数さん:2005/03/27(日) 00:29:14
>>33
あ、なるほど。Sin40どだけどね。

37 :132人目の素数さん:2005/03/27(日) 00:37:08
>>16
AからBCと平行な直線を引きCDとの交点をPとする。BC=1とすればCD=√3、CP=tan50°。
よってtan∠ADC=1/(√3-tan50°)。

38 :132人目の素数さん:2005/03/27(日) 03:14:10
mk

39 :132人目の素数さん:2005/03/27(日) 12:27:05
mk?

40 :132人目の素数さん:2005/03/27(日) 12:40:07
(ܷܵܶ∀ܷܵܶ)

41 :132人目の素数さん:2005/03/27(日) 21:07:36
>>18の質問は無かった事にしてちょーだい

42 :132人目の素数さん:2005/03/27(日) 21:51:22
どうして?

43 :132人目の素数さん:2005/03/28(月) 11:03:33
わかったずら

44 :132人目の素数さん:2005/03/28(月) 11:08:46
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  あまりにも簡単すぎますね
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 自分が恥ずかしくなったのでしょう・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


45 :132人目の素数さん:2005/03/28(月) 14:19:52
2x~3(3x~2-4x+5)は6x~5-4x~4+10~3ですよね?

46 :132人目の素数さん:2005/03/28(月) 14:29:47
6x^5-8x^4+10x^3

47 :132人目の素数さん:2005/03/28(月) 14:33:31
>>46
ありがとうございました。
くだらない凡ミスしてました。

48 :132人目の素数さん:2005/03/29(火) 10:40:10
気にせずまた来なさい

49 :132人目の素数さん:2005/03/29(火) 20:51:57
cos(nθ)+isin(nθ)=(cosθ+isinθ)^nを利用したら?
{cos(nθ)+isin(nθ)}/(cosθ^n)=(1+itanθ)^n
よって、
Pn=cos(nθ)/(cosθ^n)=1-n(n-1)/2・tanθ^2+n(n-1)(n-2)(n-3)/24・tanθ^4+・・・
Qn=sin(nθ)/(cosθ^n)=n・tanθ -n(n-1)(n-2)/6・tanθ^3+・・・
これらは明らかに整係数多項式
また、
Pn+iQn=(1+tanθ)^n=(1+tanθ)(1+tanθ)^{n-1}==(1+tanθ)(P_{n-1}+iQ_{n-1})
=(P_{n-1}-tanθQ_{n-1}))+i(tanθP_{n-1}+Q_{n-1})
よって、
Pn=P_{n-1}-tanθ Q_{n-1}
Qn=tanθ P_{n-1} + Q_{n-1}
これが一番いい答え





50 :132人目の素数さん:2005/03/30(水) 18:08:41
漸化式 X[n]=ap^n+bX[n-1](a,b,pは定数,x[0]=a)の一般項が分かりません。
よろしくお願い致します。

51 :132人目の素数さん:2005/03/30(水) 18:15:47
>>50
X[n]-ap^(n+1)/(p-b)=b{X[n-1]-ap^n/(p-b)}

52 :132人目の素数さん:2005/03/30(水) 18:18:21
>>51 有難うございました

53 :132人目の素数さん:2005/03/30(水) 22:05:40
>>50-52
 p≠b のとき X[n] = a[p^(n+1) -b^(n+1)]/(p-b),
 p=b のとき X[n] = a(n+1)b^n.

54 :132人目の素数さん:皇紀2665/04/01(金) 00:20:42
皇紀2665キタ━━━━(゚∀゚)━━━━ッ!!


55 :132人目の素数さん:皇紀2665/04/01(金) 00:23:35
これか。4/1だけか?
ttp://homepage1.nifty.com/gyouseinet/history/nengouichiran.htm

56 :132人目の素数さん:皇紀2665/04/01(金) 00:39:02
http://2ch.net
ここも

57 :132人目の素数さん:皇紀2665/04/01(金) 00:40:04
http://www.2ch.net/index-right.html
http://www.2ch.net/index-left.html


58 :!baka:皇紀2665/04/01(金) 11:01:08
今日はいろいろなことが起こるんだな

59 :132人目の素数さん:81/64/49/36/25/16/09/04/01(金) 22:49:10
これは

60 :132人目の素数さん:81/64/49/36/25/16/09/04/01(金) 22:56:14
1/{(1-x)(2+3x)}
を部分分数にわけて下さい(`;ω;´)

61 :132人目の素数さん:81/64/49/36/25/16/09/04/01(金) 22:59:58
>>60
1/{(1-x)(2+3x)}
= (1/5){1/(1-x)} + (1/5){3/(2+3x)}

62 :132人目の素数さん:81/64/49/36/25/16/09/04/01(金) 23:05:05
この方がいいよ。
1/(5-5x)+1/(10/3+5x)

63 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 09:20:05
なんで

64 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 10:10:05
3(2a-8b)-5(a-4b)
ってもっと簡単に出来ないんですか?
(2a-8b)と(a-4b)が何とか出来そうなんですが。

あと、1/3(3a-5b)-1/4(a-2b)=(3a-18)/4であってますか?

65 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 10:16:55
>>64
(2a-8b) = 2(a-4b)


66 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 10:18:17
>>64
下の計算は滅茶苦茶

67 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 10:23:32
>>65
って言うことは
3(2a-8b)-5(a-4b)
=6(a-4b)-5(a-4b)
=a-4b
おお!!素晴らしい!!

1/3(3a-5b)-1/4(a-2b)=(9a-14b)/12
ですか??

68 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 11:11:01
>>67
それでいいよ

69 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 12:00:09
>>68
ありがとうございました!!

70 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 12:15:27
2sinθ+1>0 (0゚≦θ<360゚)
を馬鹿な俺にも分かりやすくplz

71 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 12:21:49
>>70
写し間違えてないか?
sin270゜=-1だから
θ=270゜の時2sinθ+1=-1<0

72 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 13:07:39
>>70
単位円書け。y座標がsinθの値になる。
sinθ>-1/2 ⇔ 0゚≦θ<210゚ , 330°<θ<360°

73 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 13:13:55
>>71
???

74 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 13:26:14
71さん、偏差値30レベル−>頑張りましょう

75 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 13:29:53
2÷0

76 :71:81/64/49/36/25/16/09/04/02(土) 13:31:02
「不等式を解け」ではなくて「証明しろ」という問題だと勘違いしてた。

77 :132人目の素数さん:81/64/49/36/25/16/09/04/02(土) 13:43:01
>>75
(不能)


78 :132人目の素数さん:81/64/49/36/25/16/9年,2005/04/02(土) 15:41:28
>>71-72
ありがとう

79 :BlackLightOfStar ◆ifsBJ/KedU :81/64/49/36/25/16/9年,2005/04/02(土) 15:42:24
Re:>75 ComplexInfinity.

80 :132人目の素数さん:2005/04/03(日) 09:55:07
それがなにか

81 :132人目の素数さん:2005/04/03(日) 12:29:49
2/0


82 :132人目の素数さん:2005/04/04(月) 20:26:59
こんぷ

83 :132人目の素数さん:2005/04/04(月) 21:51:09
                     __rー'"´` ‐- 、
                  r‐ー'「 ,-‐ 、_',! ノ/`ヽ l 7\
                 」 ヽ /::::::::::ヽ`'´:::::::::::::\_/ヽ、
                / ‐-、/:::::::::::::::::::::::::::::::::::::::::::::::::::ヽ  i
               ノ .r'´:::::::::::::::::::::::::::::::i:::::::::::::::::::::::::::::'., l
               l /::::::::::::::::::::::::;':::;イ::/l:::::::::::::::::::::::::::::::'.,7
               〉/:;':::::::::::::::::::i::l::::l::';/:::l::::::::l::::::::';:::::::::::';:',
               l/:;'::::::::::l:::::l:::l::l:::::l;;;i;;;;;l::::::::l:::l:::::::i::::::::i::';:',
            - 、 i:;'i::::::::::l:::::l:::li::l::::l  ノ::::::::l::::l:::l:::l::::::::l:::';:',
            _ゝ:l:l:l::::::::::l:::::l::l_l::l:::l  /::::::/-l::イ::l:::l:::::::::l:::i';:i
             /へ::::::l:l::l::::::::::l:::::l::l レl::l 〈:::::/  lノ リl::::l:::::::/l::l i:l
             ,-'ニ二l::::l:::::::::l:::::l:l イ「,イ ',イ 「プト、l:/l:::::イ l::l l:!
           /  /イ:';:ヽ、:::::l';::l:!. l:::::l  リ  l:::::l ,イ::l:::/l リ ノ
            //l::::/ヽト`‐、!';:l';'., ̄  、   ̄,イ::::レ:::l
            /  l:;'/ ̄ ̄`` ‐、:::ヽ、  __  ,.イ l:::::::::::l`ヽ
               ´ヽ ー、l   ,-'"´';::', ‐- ´/ ヽ ';:::::::::l  l
              ,、ーノ ノ\__l/ヽ ';:::',  フヽ l ヽ:::::l_ノl
             /ー ̄/:::::::::::::::::::::::l/ ヽ;::', /「;;', ヽ!  ヽ:l::::ヽ
             ヽ  /::::::::::::::::::::::::::::L_ゝ:!/ヽ人:l イ:::::::'!:::::::\
             ノ /:::::::::/::::::::::::::::::::::::::::〉l/ ', ! \ フ';:::::::::::::::::::\

84 :132人目の素数さん:2005/04/04(月) 21:52:06
             ヽ  /::::::::::::::::::::::::::::L_ゝ:!/ヽ人:l イ:::::::'!:::::::\
             ノ /:::::::::/::::::::::::::::::::::::::::〉l/ ', ! \ フ';:::::::::::::::::::\
             ゝ/:::::::::/::::::::::::::::::::::::::::/ヽ  ヽ,-‐ー'´、::ゝ-‐ー:::::::::::::\
       , - 、   /, -'"´/::::::::::::::::::::::::::::::7, -'"´ ̄ ̄ヽ ̄\::::::::::::::::::::::::/
     /    \/、    /::::::::::::::::::::::::::::::::\     _,ゝ  l::::::::::::::::::ノ
   /    ,-‐ー / ` ‐ 、._ ̄ ̄ ̄L_:::::::::::::::ヽ、_.ノ`‐、ノ ,-、ヽ ̄ ̄ヽ_
   く    // /イ、     `` ‐-/  \:::::::::::::::::::::::::::::::::::/ヾ、_, ┘  __ハ )_
   ヽ ,'   / /:l i',`‐ 、._   /    l \::::::::::::::::::::::::/ヽ   、 入ノ-‐ー'´,イ
     l  /  /:::l l ',   /        l  l\::::::::::::/   \ ノ:::::::::::::::/:l
     l /  /:::::l  l ヽ '´        l   l  `‐-'´ヽ      ̄l::::::::/::::ヽ:!
     l   ,イ::::::::l   l           l   l     l  \   /l ノ::::::/::::::::::::::\
     ` ‐-/l::::::::::::l  ',        ,'   イ     l   l イ,-'´:::::/::\:::::::::::::::\
      / l::::::::::::::l    -- ‐ー '´/  /l      l   レ「:::::::::::::::l:';::」 \::::::::::::::ヽ,.ヘ
      /  l::::::::::::::::l        /   /:l      l  へ/::::::::::::::::l:::',   \::_,::-'´:::::〉
     /   l::::::::::::::::::',       /   /::l      l   「:::::::::::::::::::ノ::::::ヽフ! ヾ::::::_,、-'´へ、.___, -‐ー- 、
     /   l::::::::::::::::::::ヽ     /   /::::l      l ノ」「:::::::::::::::::;イ::::::::/::::l  ゝ:::_,、-'´:::::::::::::::::::::::::::::::::::::フl

85 :132人目の素数さん:2005/04/04(月) 21:53:19
   /    l::::::::::::::::::::::::\  /  /:::::l     ノ 」  l:::::::::::::::/ヾ ̄::::::::ノヽ ヽク/:::::::::::::::::::::::::::::::::::, -' ノ
 / , -‐ー‐-、l::::::::::::::::::::::::::::: ̄ ̄ ̄::::::::::L_ フ T `‐´ヽ、l::::::::::::l  >'' ´::/:::`‐、ヽ::::::::::::::::;ィ--ー '", - ''´
 '"´      ヽ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ̄``‐-ー'"´::::::::::「  ヽ「::::::::::::::::::::::::::`` ー‐-- 、 ̄ ̄
          \:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::」    l::::::::::::::::::::::::::::::::::::::::::::::::::ノ l
           `‐、._::::::::::::::::::, -‐ー- 、::::::::::::::::::::::::::, -‐'"´     「` ー‐─ -------‐ '' ´ ノ
               ̄ ̄ ̄      ` ‐ 、__ノ         ` ‐--┘` ー‐----‐ '"´

86 :132人目の素数さん:2005/04/04(月) 22:16:21
数学板じゃむりだな
それは

87 :132人目の素数さん:2005/04/04(月) 22:21:16
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  せいぜい私程度ですね
  iハ l  (.´ヽ     _   ./    ,' ,' '  | ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


88 :132人目の素数さん:2005/04/05(火) 03:08:39

































89 :132人目の素数さん:2005/04/05(火) 12:22:31
なんだそりゃ

90 :132人目の素数さん:2005/04/05(火) 12:28:28
81で25のもの

81にない最小(自然)

149597870(ca) Temple
教えてくれ

91 : ◆27Tn7FHaVY :2005/04/05(火) 12:29:46
イミフ

92 :132人目の素数さん:2005/04/05(火) 12:30:54
>>90
質問の意味がわからん。

93 :132人目の素数さん:2005/04/05(火) 12:42:03
http://ex10.2ch.net/test/read.cgi/news4vip/1112642338/

94 :132人目の素数さん:2005/04/05(火) 13:00:58
またvipかよ・・・

95 :95:2005/04/09(土) 21:51:15
すいません、ひとつ質問ですが、
巷にはたくさんの3D-CGソフト有りますが、
あれで、3次元スプライン曲線を引いたとき、その線の自重と重力を考慮したとして、
ある区間a-bの線長を計るときに必要な計算式は
B-スプライン曲線の方程式と
たわみ曲線の運動方程式でいいのでしょうか?
位相・集合や微分方程式、複素関数もありそうなので、
いろいろ資料を見ていますがよくわかりません。
ただ、その論理式が特許になっている場合とか、
製作会社の極秘になっている場合があるかと思いますので答えられない場合わかる範囲でも知りたいです。

3次元スプラインは通常の2次元スプラインと方程式が違う気が・・・

96 :132人目の素数さん:2005/04/09(土) 23:32:47
マジでわからなくて困ってます。お願いします。

曲線群 cx^2-y^2=1 の微分方程式を求めよ。ただし c は任意定数とする。

これの解法はcを消去する為に微分して 2cx-2y'y=0としc = y'y/x を得て最初の式の
cに代入すると聞いたのですが、別に微分しなくても c= の形にできますよね?
何故わざわざ微分しないといけないのかわかりません。

97 :132人目の素数さん:2005/04/09(土) 23:39:42
cが求めたいのならそれでいいが、微分方程式が
求めたいんだろ

98 :132人目の素数さん:2005/04/09(土) 23:46:17
なるほど。cを求める事とは違うのですか。
曲線群の微分方程式って一体何なのですかね?

99 :132人目の素数さん:2005/04/09(土) 23:52:08
cの共通の性質を調べる為に微分方程式にするのですかね。
何故、そこで微分方程式を使うのかとか考えなくていいですかね?

100 :132人目の素数さん:2005/04/10(日) 00:27:05
>>96
その計算の目的は
任意定数 c を消去すること

101 :132人目の素数さん:2005/04/10(日) 00:38:59
>>100
いや、それだと微分しなくてc=(1+y^2)/2と移行して代入すればいいのに(まぁ間違ってますが)
なぜ、微分なんだろうと。

これだと>97にループしそうですね。言葉が下手ですいません。

102 :132人目の素数さん:2005/04/10(日) 00:50:41
何に代入するんだ?

103 :132人目の素数さん:2005/04/10(日) 01:26:06
>>102
c=(1+y^2)/2を最初の式cx^2-y^2=1にです。

いや、間違ってるのですがそれでもいいんではないかと思いまして。
それで>97で回答を貰ったのですが次は>98のような疑問が出てきまして。

104 :132人目の素数さん:2005/04/10(日) 02:06:17
>>103
cというのは定数
cを決めると曲線が一つ決まる。曲線を決めるとcが一つ決まる。

高校で不定積分というのをやったろう?
積分すると、決まらない定数がでてきてしまって
初期値が与えられていないときはこれをcと書く。

つまり、cを積分定数としてcx^2 -y^2 = 1が解になるような微分方程式を求めろということ。


105 :132人目の素数さん:2005/04/10(日) 02:36:55
>>95
言ってることがよく分からないけど、曲線上の点の座標を取って
区分求積みたいにすれば?

現時点でどういう式があるのか分からないとなんともいえないけど
厳密に求まるものばかりではないので

106 :132人目の素数さん:2005/04/10(日) 02:44:54
>>104
積分定数だから(Cを消去する時)微分しろって事ですか?

107 :132人目の素数さん:2005/04/10(日) 04:53:28
>>101>>103
移項して整理すると c=(1+y^2)/x^2 ではないか?
で、それをもとの式に代入してみたのか?
その代入してみた式からなんらかの x と y の関係がでてくるのか?

108 :132人目の素数さん:2005/04/10(日) 13:36:10
簡単な例をやればよいかもしれない。
Cは任意定数とあるが曲線群というイメージから、パラメタのようなものと思える。
例えば、y=cxは回転する直線群である。
これは(y/x)'=0という微分方程式であらわせる。
つまり、この「微分方程式⇔パラメタつきの曲線群」という関係がある。
「なぜ、微分方程式を使うか」ではなくて、
微分方程式により曲線群を表すことができるということを実感するための
練習問題と思われる。

109 :132人目の素数さん:2005/04/10(日) 13:56:46
>>106
そうだよ
Cを消去するような微分をしろということだよ

110 :132人目の素数さん:2005/04/10(日) 19:30:57
整数xについての2つの条件
p:|x-15/2|<=3/4
q:x^2-15x+b<=0
がある。pがqであるための十分条件であるが、必要条件でないときの
bの最大値をもとめよ。

111 :132人目の素数さん:2005/04/10(日) 19:35:20
1年のうち90日アルバイトすれば教科書代が無料になる。
1年は365日だから、単純に計算して360÷90=4で、
4日に1日働けば、無料になると、通信制の先生がいってました。
360÷90でなぜ4日に1日働けばいいと結論付けられるのでしょうか?
そもそも一年を90で割ったのは何で、ですか?

112 :132人目の素数さん:2005/04/10(日) 20:01:17
90日アルバイトするから。

113 :132人目の素数さん:2005/04/10(日) 20:10:37
なるほど、
>そもそも一年を90で割ったのは何で、ですか?
これに答えてくれてありがとうございます。
それで360(年)を90(日数)で割ると4が出ますが、
この4はどうして4日に1日働けばいいと同義になるんでしょうか?

114 :132人目の素数さん:2005/04/10(日) 20:33:14
90日のうち90回アルバイトする
 一日一回アルバイト

180日のうち90回アルバイト
 二日に一回アルバイト

一年(約360日)のうち90回アルバイト
 四日に一回アルバイト

ここまでしかわからない。
説明できない。ごめん
勝手にアルバイトにしてごめん。

115 :132人目の素数さん:2005/04/10(日) 20:43:44
cをc>1/4を満たす実数とする。xy平面上の放物線y=x2をAとし、直線y=xーcに関してAと対称な放物線をBとする。点Pが放物線A上を動き、点Qが放物線B上を動くとき、線分PQの長さの最小値をcで表せ

116 :132人目の素数さん:2005/04/10(日) 20:46:57
>>114
どうも。
どうにも釈然としません。
足し算と引き算と掛け算はパパッとイメージが浮かぶんですが、
割り算はいまいちよく分かりません。
たぶん勉強不足が原因だと思います。出直してきます。
ありがとうございました。

117 :132人目の素数さん:2005/04/10(日) 21:08:25
>>110
pは
|x-(15/2)| ≦ (3/4)
-(3/4)≦ x-(15/2)≦(3/4)
(27/4)≦x≦(33/4)

qは
x^2 -15x +b≦0
これを解いたら
α≦x≦βになったとすると 
α+β=15
αβ=b

pがqであるための十分条件というのは
α≦(27/4)≦x≦(33/4)≦βということ。

さらに、pがqであるための必要条件ではないということは
α<(27/4)または、(33/4)<βが成り立つということ。

あとは整数ということを考えないと菜

118 :132人目の素数さん:2005/04/10(日) 22:17:09
座標(0,0)、(0,3)、(3,2)で構成される三角形の垂心の座標を求めよ

という問題で悩んでいます。
とりあえず、垂心のy座標が2であることは分かったのですが
x座標の求め方が分かりません。
垂心が垂線を一定の比率で内分などの性質ありましたかね?

119 :132人目の素数さん:2005/04/10(日) 22:20:28
微分方程式の問題なのですが。
f(x)をベクトル場(R^nのベクトル場。)
に対して、曲線x(t)はx'(t)=f(x(t))を満たすとする。
(つまり積分曲線。)
このとき、x(t)が自明(定点)でないなら、
任意のtで、f(x(t)) neq 0らしいのですが、これが分かりません。
一瞬止まるくらい、いいではないか!と思えるんですが。
簡単のためRでという設定でもよいので、
誰か分かる人いましたら、(できれば幾何的イメージの捉えられるような)
回答お願いします。

120 :132人目の素数さん:2005/04/10(日) 22:23:19
(0,0)と(3,2)を結ぶ直線の水仙の方程式を出して
それのy=2のときのxの値を出せばいい。

121 :132人目の素数さん:2005/04/10(日) 22:28:08
>>120
頭いい!

122 :132人目の素数さん:2005/04/10(日) 22:42:38
問題というか、お聞きしたいのですが
「超越関数」ってどういうことでしょう?
具体的には三角関数、指数関数などといことが分かったのですが、
なぜ「超越」と言われるのかお教えいただきたいです

123 :132人目の素数さん:2005/04/10(日) 22:48:31
「n個のサイコロを振って出た目の合計が2nになる確率」
ってnを使って求められますか?

124 :132人目の素数さん:2005/04/10(日) 23:09:50
>>122
http://next1.cc.it-hiroshima.ac.jp/MULTIMEDIA/calcmulti/node17.html

125 :132人目の素数さん:2005/04/10(日) 23:15:27
>>119
x'(t)=f(x(t))
の両辺を tで微分すると

x''(t) = f'(x(t)) x'(t)
だから、x'(t) = 0となってしまった場合
x''(t)=0で
加速度も0

一瞬止まっても、再び動き出す運動もあるが、それは加速度があってこそ動きだせる。
例えばボールを真上に投げたら、途中で速度0になって、落ちてくる。
それは重力すなわち、運動方程式でみれば加速度が働いているからこそ動き続けられる。
加速度も0、速度も0の状態で再び動きだすことは無理。

126 :132人目の素数さん:2005/04/10(日) 23:18:32
>>125
なるほど。
正確にはその一点でx'''(t)=x''''(t)=...=0
ということでしょうか?

127 :132人目の素数さん:2005/04/10(日) 23:21:27
>>126
微分し続ければね。

128 :126:2005/04/10(日) 23:23:42
あ、因みに後、
自励系(自律系)って運動ではどんなのがあるんでしょうか?
>>125を見て疑問を持ちました。

129 :132人目の素数さん:2005/04/11(月) 00:18:33
普通に、単振動とか振り子とか
バネで単振動しつづけてれば、位置によって速度が決まる。

130 :132人目の素数さん:2005/04/11(月) 00:21:07
>>129
あ、それは駄目そうですよ。
いったきり戻ってこない。fは時間によりませんから。

131 :132人目の素数さん:2005/04/11(月) 00:28:10
じゃ、円運動だな。
振り子をぐるぐる回してたらいい。

132 :132人目の素数さん:2005/04/11(月) 00:29:59
地球などの惑星の運動

133 :132人目の素数さん:2005/04/11(月) 00:35:26
なるほど、ありがとうございました。

134 :132人目の素数さん:2005/04/11(月) 00:53:57
なんで、分からんスレと小中すれが2つあるんでしょうか?

135 :132人目の素数さん:2005/04/11(月) 03:45:41
先日はお世話になりました。またよろしくお願いします。

曲線群の微分方程式を求めよ。a,bは任意定数

ay^2=4(x+b)

これ1階微分したら定数二つとも消えてしまうのですが
どうやって解くのですか?

あとどの微分方程式の問題でも右辺は0にした方がいいのですか?

136 :132人目の素数さん:2005/04/11(月) 03:46:48
(訂正)
×定数二つとも消えてしまうのですが

〇bが消えてしまって2階微分しても意味が無いのですが

137 :132人目の素数さん:2005/04/11(月) 09:53:52
>>135
任意定数を消すのが目的なんだから、定数が消えてくれればうれしいだけじゃないか。
1階微分の式に2階微分の式を代入する。

138 :132人目の素数さん:2005/04/11(月) 11:53:21
>>135
微分方程式を解くときに積分定数が現れる。
それが、aとb
どちらからでもいいが、逆に微分方程式を得るためには
これらの定数を消すように微分する筈で

ay^2 = 4(x+b)
2ayy' =4x
a =2x/(yy')
0 = (2x/(yy'))'

これを逆に読めば
微分方程式を解く手順になり、a,bが積分定数となった過程もわかる

139 :132人目の素数さん:2005/04/11(月) 13:12:27
(x+y)(x+y+1)+2x=2^1005
自然数x,yを求めよ。

これは多項式時間アルゴリズムに直したいんですが、
どなたかさばいてくれませんか?

140 :132人目の素数さん:2005/04/11(月) 13:37:54
1cm~3= L
1m~3= L

体積をリットルにしなければならんないんですがどうすればいいんでしたっけ?

141 :132人目の素数さん:2005/04/11(月) 13:50:56
>>140
リットルでググれ

142 :132人目の素数さん:2005/04/11(月) 14:00:22
>>139
x+y=tとおくとt^2+t+2x=2^1005
二次方程式t^2+t=2^1005を解の公式で解いて、端数を切り捨てた値をtとする。
そして、x=(2^1005-t^2-t)/2を求める。
t>xならy=t-x
t≦xなら解無し

四則演算や平方根の計算は桁数を基準にして多項式時間でできるよな。

143 :132人目の素数さん:2005/04/11(月) 23:28:29
>>140
1L = 1000ml = 1000cc = 1000cm^3

1000L = 1m^3

144 :132人目の素数さん:2005/04/12(火) 01:02:30
>>137-138
解決しました。なんとなく何かを掴めたような気がしました。
ありがとうございます。


掴めたような気がして練習問題を解こうとしたらできなかった。
すいません。これの解法教えてください。本当に何回もすいませんorz

この曲線群の微分方程式を求めよ。

  y=√(x+c)




145 :132人目の素数さん:2005/04/12(火) 01:20:33
>>144
両辺2乗汁。高校からやり直すのをお勧めする。

146 :132人目の素数さん:2005/04/12(火) 02:58:05
>>144
とりあえず、
c = 〜
の形に変形して、微分すれば、cが消える

147 :132人目の素数さん:2005/04/12(火) 08:35:41
三角比の正弦定理習ったんですが
sinA=a/2Rをa/sinA=2Rにして…って流されたこの部分の変換が自分でできません
なにかおもいちがいをしてるんでしょうが、放置もできず悩んでます
お願いします

148 :147:2005/04/12(火) 08:38:54
違うものに置き換えて考えてみたら、馬鹿みたいに簡単にできました
すみませんでした

149 :132人目の素数さん:2005/04/12(火) 11:47:39
sinA=a/2R、両辺の逆数をとって、1/sinA=2R/a、両辺aをかけてa/sinA=2R

150 :132人目の素数さん:2005/04/12(火) 13:45:09
29

151 :132人目の素数さん:2005/04/12(火) 14:12:09
30

152 :()は数列の項みたいなやつです。ほら小文字の。:2005/04/12(火) 14:55:08
a(1)=4,a(n+1)={4a(n)-9}/{a(n)-2}で定められている数列{a(n)}の一般項を求めよ。

解答:
b(n)=a(n)-kとおくと、a(n)=b(n)+k
漸化式からb(n+1)+k={4(b(n)+k)-9}/{(b(n)+k)-2}
よって・・・・・・・・kjskjふぁいじおぱjfはぴうおhふぃあじょpfじゃp






自己解決しますた。

153 :132人目の素数さん:2005/04/12(火) 15:06:14
>>139
ありがとうございました。助かりました。

154 :132人目の素数さん:2005/04/12(火) 15:21:43
お願いします。

ジョーカーを除く52枚のトランプのうち連続で2枚引いたとき両方ともハートである確率は?


3/52ではないと聞いてしょぼーん…

155 :132人目の素数さん:2005/04/12(火) 15:30:55
(1/4)*(12/51)

156 :132人目の素数さん:2005/04/12(火) 15:36:25
>155


あっ…

157 :132人目の素数さん:2005/04/12(火) 15:52:22
16
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  今学校にいます
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 早く帰りたいです・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


158 :132人目の素数さん:2005/04/12(火) 15:55:39
>>157
帰って良いよ

159 :132人目の素数さん:2005/04/12(火) 18:00:21
スイマセン頭の悪い俺に答えを教えて下さい。

ジョーカーを除く52枚のトランプのうち連続で2枚引いたとき両方ともハートである確率は?

教えて下さいエライ人

160 :132人目の素数さん:2005/04/12(火) 18:05:15
あっ、スイマセン
154と同じ質問しちゃいました。
でも155で答えなんですか?わからない…

161 :132人目の素数さん:2005/04/12(火) 18:22:22
>>159
1枚目がハートである確率 (13/52)
さらに2枚目がハートである確率 (12/51)

(13/52)*(12/51) = 1/17

162 :132人目の素数さん:2005/04/12(火) 18:26:26
どうもありがとうございました!

163 :132人目の素数さん:2005/04/12(火) 22:55:58
空集合に対する同値関係にはどのようなものがありますか?
本には任意の集合に対して相等関係が成り立つと書いてあるのですが
空集合にも成り立つんですか?

164 :132人目の素数さん:2005/04/12(火) 23:04:09
よろしくお願いします・・・
F(x)=∫(x/1-x)^1/2dx

F(x)=∫cosmxcosnxdx

lim{tanx^12-(tanx)^12}/x^3{cos2x-cos^4}^3
x→0

165 :132人目の素数さん:2005/04/12(火) 23:07:27
なんでぶら下がったものはカテナリーになるのですか?


166 :132人目の素数さん:2005/04/12(火) 23:17:06
俺の股間にも何かぶら下がっているが、これはカテナリーと呼ばれるモノなのか。

167 :132人目の素数さん:2005/04/12(火) 23:59:15
>>163
成り立つ。

(元a,bを取る)⇒(a〜b)
のようなものであれば、空集合から元を選ぶ事はできないので
(a〜b)は真

168 :164:2005/04/13(水) 00:01:29
すみません、ひとつめの
F(x)=∫(x/1-x)^1/2dx は F(x)=∫√(x/1-x)dxってことです。



169 :132人目の素数さん:2005/04/13(水) 00:09:52
>>164
真ん中のは積和公式でもつかえば。

最後のは式がよくわからん。


170 :132人目の素数さん:2005/04/13(水) 00:18:04
「複素数α,βに対して、α*β=0ならば
α=0またはβ=0であることを示せ。」

超基本問題でスミマセン…お願いします…

171 :132人目の素数さん:2005/04/13(水) 00:22:34
>>170
α≠0とすると、αと、共役複素数α~ との積 α(α~) > 0
αβ=0
(α~)αβ=0
α(α~) β=0
β=0
β≠0とすると、同じように α=0

172 :164:2005/04/13(水) 00:25:12
>>169
あ〜積和使えばすぐでしたね。
最後のは
lim{tan(x^12)-(tanx)^12}/x^3{cos2x-cos(x^4)}^3
x→0
でした。ちょっとこれ以上はうまくかけないや
でもありがとう。助かります!!

173 :132人目の素数さん:2005/04/13(水) 00:26:45
>>165
http://aozoragakuen.sakura.ne.jp/taiwa2/kensui/node2.html

174 :132人目の素数さん:2005/04/13(水) 00:28:14
お願いします。ある年の1月1日が土曜日のとき30^10日後は何曜日か?

175 :132人目の素数さん:2005/04/13(水) 00:31:16
>>172
極限は、テイラー展開でも考えれば、0かな。

176 :132人目の素数さん:2005/04/13(水) 00:31:45
>>174
閏年とかはどうすんの?

177 :132人目の素数さん:2005/04/13(水) 00:32:38
なしと考えて下さい

178 :132人目の素数さん:2005/04/13(水) 00:32:48
あ、曜日か。関係ないわ

179 :132人目の素数さん:2005/04/13(水) 00:35:22
>>174
mod 7で考えると
30 ≡ 2だから

30^10 ≡ 2^10

2^3 = 8 ≡ 1なので

2^10 ≡ 2

したがって、2つ先で 月曜日

180 :132人目の素数さん:2005/04/13(水) 00:36:14
ありがとうございます。

181 :132人目の素数さん:2005/04/13(水) 00:56:13
>>175
tan(x^12)とか(tanx)^12それぞれにテイラー展開ですか?

182 :132人目の素数さん:2005/04/13(水) 01:00:08
>>181
tan(x) ≒ x + (1/3)(x^3) + …
だけ知っていれば

tan(x^12) ≒ (x^12) + (1/3)(x^36) + …
(tan(x))^12 ≒ (x^12) + 4(x^14) + …
と分かる。

183 :132人目の素数さん:2005/04/13(水) 01:08:56
>>182
ありがとうございます。一応全部書き下してみます・・・

184 :132人目の素数さん:2005/04/13(水) 01:19:44
∫√(x/1-x)dx、√(x/1-x)=t とおくと、2∫t(1-x)^2 dt = 2∫t^2/(1+t^2)^2 dt
t=tan(θ) とおくと、2∫sin^2(θ) dθ=∫1-cos(2θ) dθ=θ- {sin(2θ)/2} + C
=arctan(t) - {t/(1+t^2)} + C = arctan(√(x/1-x)) - √{x(1-x)} + C

185 :132人目の素数さん:2005/04/13(水) 01:22:37
>>182
ええ?
(x + (1/3)(x^3))^14=x^14+(14/3)x^12+...
となりますよ。

186 :132人目の素数さん:2005/04/13(水) 01:37:35
なんだコイツ?

187 :132人目の素数さん:2005/04/13(水) 01:54:15
>>185
12と14

188 :185:2005/04/13(水) 03:25:11
おっとミスプリ。

>>182
(x + (1/3)(x^3))^14=x^14+(14/3)x^16+(xの18次以上の項)
となりますよ。 つまり、

>tan(x) ≒ x + (1/3)(x^3) + …
>だけ知っていれば
>(tan(x))^12 ≒ (x^12) + 4(x^14) + …
>と分かる。

とはいえませんよ。もちろん
(tan(x))^12 ≒ (x^12) + 4(x^14) + …
は正しいですが。

189 :132人目の素数さん:2005/04/13(水) 03:42:35
174
ですがmodを使わないで求める方法は、(7×4+2)^10=7x+2で二日ずれるってことでいいのですか?

190 :132人目の素数さん:2005/04/13(水) 04:06:38
1÷3×3=1?

191 :132人目の素数さん:2005/04/13(水) 04:17:51
6#110
10#1010
14#1110
なんか法則性があるらしいんですが・・・・
このあとも続くらしいです

192 :132人目の素数さん:2005/04/13(水) 04:23:52
2進法

193 :132人目の素数さん:2005/04/13(水) 04:28:11
>>192
詳しくお願いします

194 :132人目の素数さん:2005/04/13(水) 04:55:20
命題『ある実数xに対して、x^2-2x-1<0が成り立つ』の否定命題は『すべての実数〜〜〜-2x-1≧0が成り立つ』で、『偽』であってますか?

195 :132人目の素数さん:2005/04/13(水) 09:28:49
質問です。
1・|x|=max(x,-x)とするとき||x|-|y||≦|x±y|≦||x|+|y||を示せ。
2・∀ε>0 |a-b|<ε⇔a-b=0 を背理法を使って示せ。
3・∪(n=1〜∞)[1,2-1/n]=[1,2)を示せ。
4・∩(n=1〜∞)(1,1+1/n)=φを示せ。



196 :132人目の素数さん:2005/04/13(水) 09:43:55
>>195
|x| = xの時 x ≧-xなので、x≧0 すなわち、|x| = x ≧0
|x| = -x の時 -x≧xなので、0≧x すなわち、|x| = -x ≧0
したがって、|x| ≧ 0

またx^2 = (-x)^2なので|x|^2 = x^2となり

||x|-|y||^2 = (|x|-|y|)^2 = |x|^2 -2|x| |y| +|y|^2 = (x^2) -2|x| |y| +(y^2)
||x|±|y||^2 = (x±y)^2 = (x^2)±2xy+(y^2)
||x|+|y||^2 = (|x|+|y|)^2 = |x|^2 +2|x| |y| +|y|^2 = (x^2) +2|x| |y| +(y^2)

ここで
(-|x| |y|)^2 = (|x| |y|)^2= |x|^2 |y|^2 = (x^2)(y^2) = (xy)^2
|x| |y| ≧だから、-|x| |y| ≦ xy ≦ |x| |y|となり
||x|-|y||^2 ≦ ||x|±|y||^2 ≦ ||x|+|y||^2 となり
||x|-|y||≦|x±y|≦||x|+|y||

197 :132人目の素数さん:2005/04/13(水) 10:06:00
>>185
いえ、ちゃんとした解答になるように書くって意味だったんですよ。
へんな書きかたしてすいません

198 :132人目の素数さん:2005/04/13(水) 10:10:05
>>189
かまいません。

199 :132人目の素数さん:2005/04/13(水) 10:10:46
>>194
かまいません。

200 :132人目の素数さん:2005/04/13(水) 10:15:10
>>188
f(x) ≒ x+(1/3)(x^3)+ (4次以上の項)であることが分かっていれば
(f(x))^n ≒ x^n +(n/3)(x^(n+2)) + (n+3次以上の項)です。
何の問題もありません。

201 :164:2005/04/13(水) 10:24:59
あ、185は183へのレスだったんですね。
どうも失礼しました。結局極限0でいいんでしょうか?分母が気になりますが・・・
184さんもありがとうございました。みなさんたのもしいッす

202 :132人目の素数さん:2005/04/13(水) 10:33:29
問題が間違ってなければ 0だろうなぁ

203 :132人目の素数さん:2005/04/13(水) 10:33:54
>>201
分母も同じようにテイラー展開で評価

204 :132人目の素数さん:2005/04/13(水) 10:37:59
>>193
「2進法」でググれ

205 :132人目の素数さん:2005/04/13(水) 10:42:00
>>203まじすか。がんばります

206 :132人目の素数さん:2005/04/13(水) 10:45:43
>>165
「カテナリー 変分法」でググったらこんなの発見
http://members.jcom.home.ne.jp/dslender/dsma0303.html
-------------------------------------------------
カテナリの方程式の導出法としておそらく最も初等的なのは、
紐の微小部分に加わる力の釣り合いから微分方程式を立てて
それを解く方法だと思われますが、掲示板で再現するのはやや面倒です。
英文ですが、次のリンク先を参照なさってはいかがでしょう。
http://www.du.edu/~jcalvert/math/catenary.htm

他に、より高度ですが、変分法による導出法もあるようです。

なお、導出過程が書かれた日本語のサイトを私は知りませんが、
書籍ならたくさんあると思います。たまたま私が所有している中では、
中尾愼宏 著「概説 微分方程式」(サイエンス社)
が、この問題に限って言えば、かなり丁寧に記述されていると感じました。
(変分原理による方法にも言及されています)

207 :132人目の素数さん:2005/04/13(水) 10:46:04
>>195
a-b=0 ⇒ ∀ε>0 |a-b|=0<ε
は自明なので
∀ε>0 |a-b|<ε⇒ a-b = 0を背理法によって示す。
a-b≠0となるa,bがあるとする。
t=|a-b|とおくと、t>0
ε= (t/2) ( > 0) と取ると t > ε > 0
これは ∀ε>0 |a-b|<ε に反する。よって、a-b=0

208 :132人目の素数さん:2005/04/13(水) 12:43:39
1を3で割ると3.33333333・・・
A3.3333333・・・に3を掛けると9.999999999・・・
Aいつまでたっても1にはならない

さんざ既出で基本的な問題かもしれないけど、分数では無い方法で、なぜこうなってしまうのか教えて下さい。


209 :132人目の素数さん:2005/04/13(水) 13:20:15
1を3で割ると0,3333333…

210 :208:2005/04/13(水) 14:00:36
・・・すいません。アホです。脳内保管でお願いします

211 :132人目の素数さん:2005/04/13(水) 14:23:03
>>210
>1を3で割ると3.33333333・・・
正しい

>・3.3333333・・・に3を掛けると9.999999999・・・
(微妙だが)正しい

>・いつまでたっても1にはならない
ここがダウト

212 :132人目の素数さん:2005/04/13(水) 14:24:16
n+7が5の倍数でn+5が7の倍数のとき、n+12が35で割りきれることを示すには、、、5(n+7)×7(n+5)を計算すればいいですか?

213 :132人目の素数さん:2005/04/13(水) 14:38:23
n+7が5の倍数でn+5が7の倍数のとき
(n+7)(n+5)は35の倍数。
⇔ n(n+12)+35 は35の倍数。
⇔ n(n+12) は35の倍数。

214 :132人目の素数さん:2005/04/13(水) 14:45:36
n+12=(n+5)+7=(n+7)+5

215 :132人目の素数さん:2005/04/13(水) 14:49:46
213,214
ありがとうございます

216 :132人目の素数さん:2005/04/13(水) 15:06:51
zを複素平面で表す。lzl=1 とするとき、z = cosθ + jsinθ と表現でき、zを複素平面でθ回転したときの複素数をwとすると、次式をwをcosθとsinθで表すのがわかりません。教えてください。
w = cos2θ + Jsin2θ = ???

217 :132人目の素数さん:2005/04/13(水) 15:08:55
>>216
三角関数の倍角公式を使うか、
或いは
w = z^2 = (cosθ+j sinθ)^2 を展開する。

218 :132人目の素数さん:2005/04/13(水) 15:27:58
貧^2-9n-1が自然数になる自然数nの値ってどのようにして求められますか?

219 :132人目の素数さん:2005/04/13(水) 15:32:07
>>217
有難うございました。ですが、頑張ってみましたがわかりません。

220 :132人目の素数さん:2005/04/13(水) 15:47:39
>>219
倍角公式を知らないという意味?

221 :132人目の素数さん:2005/04/13(水) 15:52:42
>>218
m = √(n^2-9n-1)
であるとすると
m^2 = n^2 -9n-1 = (n-3)^2 -10
(n-3)^2 = m^2 +10
(n-3+m)(n-3-m)=10

nとmが自然数であれば、
(n-3+m)と(n-3-m)は
10の約数になる。
あとは、10の約数を探して、方程式を解くだけ。

222 :132人目の素数さん:2005/04/13(水) 15:56:48
2乗すると11になる数を、
9/64の平方根の負の方を、
36の平方根を、
xの2乗=8にあてはまるxを、
根号を使って表せ

・・・全然ワカンネェ・・・


223 :132人目の素数さん:2005/04/13(水) 16:01:21
>>222
2乗すると11になる数を、 → ±√11
9/64の平方根の負の方を、 → -√(9/64) = -3/8
36の平方根を、 → ±√36 = ±6
xの2乗=8にあてはまるxを、 → x=±√8 = ±2√2


224 :132人目の素数さん:2005/04/13(水) 16:03:31
>>223サンクス!

225 :BlackLightOfStar ◆mBZJN.ruEw :2005/04/13(水) 16:23:27
<tr>
<td></td><td></td><td></td><td></td>
</tr>




226 :132人目の素数さん:2005/04/13(水) 17:26:22
>>221
n^2 -9n-1 = (n-3)^2 -10

アホ死ね

227 :132人目の素数さん:2005/04/13(水) 18:48:51
auからアプリ起動させて2ちゃん見てます。
しかし、IDにBE:がつく人のレスが読むことができません。
ヌー速も>>1が読めない状態です。
読めるようにするにはどうしたらよいですか?

228 :132人目の素数さん:2005/04/13(水) 18:50:02
数学板は関係ないやん。

229 :132人目の素数さん:2005/04/13(水) 20:31:13
arctan(xy)の1階と2階の偏導関数って?
できたら、導き方も一緒に教えてもらえるとうれしい。

230 :132人目の素数さん:2005/04/13(水) 20:50:34
y=tan^(-1) x
y'=1/(1+x^2)
y''=-2x/(1+x^2)^2

これ適用しろや

231 :132人目の素数さん:2005/04/13(水) 20:52:42
┃3 1 1 … 1┃
┃1 3 1 … 1┃
┃1 1 3 … 1┃ (n次)
┃    …    ┃
┃1 1 1 … 3┃

↑の行列式の値の求め方を教えて下さい。




232 :132人目の素数さん:2005/04/13(水) 20:57:39
はきだせ!

233 :132人目の素数さん:2005/04/13(水) 20:59:23
余因子行列を使え

234 :218:2005/04/13(水) 20:59:41
>>221
ありがとうございます。
が、因数分解でミスが…

235 :132人目の素数さん:2005/04/13(水) 21:14:14
z=tan^(-1) xy
∂z/∂x=y/(1+x^2 y^2)
∂z/∂y=x/(1+x^2 y^2)
∂^2 z/∂x^2=-2xy^2/(1+x^2 y^2)^2
∂z^2 /∂y∂x=∂z^2 /∂x∂y=(1-x^2 y^2)/(1+x^2 y^2)^2
∂^2 z/∂y^2=-2x^2 y/(1+x^2 y^2)^2

236 :229:2005/04/13(水) 21:23:01
ごめんなさい。/を入れるの忘れてまして、、、

arctan(x/y)の偏微分でした。
xの時はそのまま分かるんですが、yのときは?

237 :132人目の素数さん:2005/04/13(水) 21:29:29
>>231
┃3 1 1 … 1┃
┃1 3 1 … 1┃
┃1 1 3 … 1┃
┃    …    ┃
┃1 1 1 … 3┃
→ (2行から最後の行までを1行に加えて(n+2)を外に出す)
┃1 1 1 … 1┃
┃1 3 1 … 1┃
┃1 1 3 … 1┃×(n+2)
┃    …    ┃
┃1 1 1 … 3┃
→(2行から最後の行まで1行を引く。)
┃1 1 1 … 1┃
┃0 2 0 … 0┃
┃0 0 2 … 0┃×(n+2)
┃    …    ┃
┃0 0 0 … 2┃

= (n+2)*2^(n-1) (1列で展開)

238 :132人目の素数さん:2005/04/13(水) 21:33:50
>>236
(∂/∂y) arctan(x/y)
=[1/{1+(x/y)^2}] * (∂/∂y) (x/y)
={y^2/(x^2+y^2)} * (-x/y^2)
=-x/(x^2+y^2)

239 :236:2005/04/13(水) 21:36:32
>>238
ありがとうございます。

240 :132人目の素数さん:2005/04/13(水) 22:10:37
>>237
よく分かりました。ありがとうございました。

241 :132人目の素数さん:2005/04/13(水) 22:16:37
>>211
つまり、1=0.99999999・・・・ってことですか?

242 :132人目の素数さん:2005/04/13(水) 22:39:57
>>241
そうです。

243 :132人目の素数さん:2005/04/13(水) 23:10:51
>>236
マ   ジ   で   死   ね

244 :BlackLightOfStar ◆BUG4TDA93k :2005/04/13(水) 23:24:58
>>243
おまえがな

245 :132人目の素数さん:2005/04/13(水) 23:46:00
またクズの黒光星か

246 :132人目の素数さん:2005/04/13(水) 23:51:23
236 229 2005/04/13(水) 21:23:01
ごめんなさい。/を入れるの忘れてまして、、、

arctan(x/y)の偏微分でした。
xの時はそのまま分かるんですが、yのときは?

こんなことが許されるのか?

247 :132人目の素数さん:2005/04/14(木) 00:05:22
>>218
m = √(n^2-9n-1)
(2m)^2 = 4n^2 -2*18n-4 = (2n-9)^2 -85

(2n-9-2m)(2n-9+2m) = 85

248 :132人目の素数さん:2005/04/14(木) 00:08:54
2^n−1が素数ならばnは素数である。の対偶はnが有理数ならば、2^n−1は有理数である?

249 :132人目の素数さん:2005/04/14(木) 00:21:37
>>248
素数の否定は 合成数(と1) では?

250 :132人目の素数さん:2005/04/14(木) 00:45:36
249
合成数かぁ。ありがとうございます。初めて聞いた言葉です

251 :BlackLightOfStar ◆BUG4TDA93k :2005/04/14(木) 01:42:34
>>245
またとはなんだこの粕。

252 :132人目の素数さん:2005/04/14(木) 01:56:44
                                                                              ■■■■
              ■■■              ■■■■■■■■        ■■■      ■■■■■    ■
    ■■      ■■■              ■■■■■■■■        ■■■■■■■■■■■    ■
    ■■■■■■■■              ■■■■■■■■        ■■■  ■■■■■■■■■■
    ■■■■■■■■■■              ■■■■■          ■■■          ■■■
    ■■■■■■■■■■■        ■■■■■■■■■      ■■■■■■■■■■■■■
  ■■■■  ■■■  ■■■    ■■■■■■■■■■■■    ■■■■■■■■■■■■■
■■■■■■■■      ■■    ■■■■■■      ■■■■  ■■            ■■■
■■■■  ■■■■■■■■■    ■■  ■■■■    ■■■■■■      ■■■■■■■■
■■■    ■■■■■■■■■        ■■■■■■  ■■■■■■    ■■■■■■■■■
■■■  ■■■■■  ■■■■      ■■■■■■■■■■  ■■■  ■■■    ■■■  ■
■■■■■■  ■■■■■■        ■■■■  ■■■■■  ■■■  ■■■    ■■■
  ■■■■■  ■■■■■          ■■■■■■■■■    ■■■    ■■■■■■
    ■■        ■■                ■■■■■■          ■■      ■■■■

253 :132人目の素数さん:2005/04/14(木) 02:02:31
Aを整数の組(k,l)の集合とし、関係〜を「(k,l)〜(m,n)とはk+n=m+lである」と定義すれば、この関係は同値関係になることを示せ。また、この関係による同値類の要素は、整数に、1対1に対応することを示せ。
教えてください。同値関係はニガテです

254 :132人目の素数さん:2005/04/14(木) 02:15:42
Aって自然数じゃなくて整数の組なんですか?
まあそれでも成り立つけどね

(k+l) = (m+n)と k-l = m-nが同値であることに注意すれば
同値関係であることは簡単に示せる。
また、これは{k-l ; k,lは自然数}との間に一対一対応がある。

同値関係は、要するにグループ分けの事だと思っておいたら良いよ

255 :132人目の素数さん:2005/04/14(木) 03:32:41
248ですが、
nが合成数ならば2^n−1は合成数である。が成り立つことを証明するにはどうすればよろしいですか?明らかである。ではいけませんか?何度もすみません

256 :132人目の素数さん:2005/04/14(木) 07:21:22
>>255
俺にはあきらかではないので却下

257 :132人目の素数さん:2005/04/14(木) 08:38:50
>>255
n=pq,p>1,q>1とすると、
2^n-1
=(2^p)^q-1
=((2^p)-1)((2^p)^(q-1)+(2^p)^(q-2)+...+1)
つまり2^n-1は合成数。

258 :132人目の素数さん:2005/04/14(木) 10:16:15
証明しろという問題で、あきらかと答えるのはタブー

259 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/14(木) 13:22:01
Re:>165 簡単にいうと、束縛条件の中でオイラーの方程式を立てて解くのだ。
Re:>166 おまえの体はそんなに柔らかいのか?
Re:>225,244,251 お前誰だよ?

260 :132人目の素数さん:2005/04/14(木) 14:08:15
>>259
オマエコソダレダ

261 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/14(木) 14:27:11
Re:>260 私もまた、悪人が居なくなったときこそ真の人間として現れるであろう。

262 :132人目の素数さん:2005/04/14(木) 14:27:50
やっぱり人間では無いんだな…

263 :132人目の素数さん:2005/04/14(木) 14:58:36

































264 :132人目の素数さん:2005/04/14(木) 17:16:15
a

265 :132人目の素数さん:2005/04/14(木) 23:33:02
>>259
柔らかいって?

266 :132人目の素数さん:2005/04/15(金) 01:16:34
|x|+|y|≦1がx^2+y^2≦r^2 (r>0)であるための必要条件のrの値の範囲と、十分条件になるrの値の範囲を求めたいんですが、どうすればええの?

267 :132人目の素数さん:2005/04/15(金) 01:41:46
>>266
グラフを描くのが一番かと思います。

|x|+|y|≦1は、(±1,0),(0,±1)を頂点とする正方形
x^2+y^2≦r^2 は原点中心の円で

|x|+|y|≦1に含まれる点が全て x^2+y^2≦r^2 に含まれるには?

268 :132人目の素数さん:2005/04/15(金) 01:49:37
r≧1ですな?!

269 :132人目の素数さん:2005/04/15(金) 09:49:44
そうです

270 :132人目の素数さん:2005/04/15(金) 18:41:56
>>261
お前誰だよ?

271 :132人目の素数さん:2005/04/15(金) 19:00:47
あのー、質問なんですが、(−1)*(−1)はなぜ1になるのですか?
教えて下さい。


272 :236:2005/04/15(金) 19:06:53
>>246
許されるのか?ってどういう意味です?

273 :132人目の素数さん:2005/04/15(金) 19:13:23
>>271
高校生以下だと仮定してレス。
そう定義するのが、数学の発展上一番有効だと認識されるようになったから。
反対するものと、反対するものが打ち消しあうというイメージが、
一番よかったんだろう。
多分、(-1)×(-1)を頭の中でイメージできるように
するにはどうすればいいんだろう、
みたいな疑問は持つかもしれないけど、
その疑問はあんまり役に立たない。

274 :132人目の素数さん:2005/04/15(金) 19:17:54
あと補足。
役に立たないっていうのは、受験の数学の範囲の話で、
本当に数学を使う
職業に就くようになったら、役に立つようになるかもしれない。

275 :132人目の素数さん:2005/04/15(金) 19:24:26
>>271
(-1)*2 = -2
(-1)*1 = -1
(-1)*0 = 0
(-1)*(-1) = 1
(-1)*(-2) = 2


276 :132人目の素数さん:2005/04/15(金) 19:29:51
ケットって数学的に何なんでしょう?

277 :132人目の素数さん:2005/04/15(金) 20:06:04
>>276
ベクトル

278 :132人目の素数さん:2005/04/15(金) 20:10:03
>>277
それは、ベクトルとは何ですか?
という問いに「群」と答えるようなものですが。
そのような答えは期待してないので悪しからず。

279 :132人目の素数さん:2005/04/15(金) 20:10:18
確率分布について質問します。

確率分布という言葉は、具体的に何を指すのでしょう?

確率密度関数のことでしょうか?
累積分布関数のことでしょうか?

いろいろ本をめくってみてもわかりません。
例えば、本によっては確率密度関数と確率分布が同じものを差すような感じで
書かれていたりしますが、何故2つの異なる表現を用いるのか?などがよくわかりません。

280 :132人目の素数さん:2005/04/15(金) 20:11:05
@|2x-9|>x-4を満たす実数xの範囲を求めよ。
A連立方程式
 (a-5)x+7y=4+a
7x+(a-5)y=a
 はa=□のとき無数に多くの解をもち,a=○のとき解をもたない。

上の問題が分かりません・・・。計算過程も教えていただけると有難いです・・・。


281 :132人目の素数さん:2005/04/15(金) 20:11:44
>>278
何を期待しているのかが分からない以上は
そう、こたえるしかない。
回答者は超能力者ではない。

282 :132人目の素数さん:2005/04/15(金) 20:13:40
>>281
ごめんなさい。もう>>277のような荒らしには反応しません。

283 :132人目の素数さん:2005/04/15(金) 20:15:06
>>282
荒らしているのは
>>276
>>278
の方だろう。

質問すらまともに書けないような奴は、
小学校からやりなおしておいで。

284 :132人目の素数さん:2005/04/15(金) 20:17:13
>>280
x ≧ (9/2) の時
|2x-9|= 2x-9 >x-4
x > 5
x ≧ (9/2) とあわせて
x > 5

x < (9/2) の時
|2x-9|= -(2x-9) >x-4
x < (13/3)
x < (9/2) の時とあわせて
x < (13/3)

よって、
x < (13/3), 5 < x

285 :132人目の素数さん:2005/04/15(金) 20:20:09
>>280
(a-5)x+7y=4+a
7x+(a-5)y=a

a-5 = 7の時 解無し
a-5 = -7の時 無数に多くの解を持つ

286 :132人目の素数さん:2005/04/15(金) 20:22:12
分からないなら別に回答のなくてもよいですが。
改めて。
ケットって何なんでしょう?分かる人教えてください。

287 :132人目の素数さん:2005/04/15(金) 20:24:23
2辺が4cmでその間の角が45度の二等辺三角形4個と、正方形1個で作られた正四角錐の表面積を求めよ。ただし、ルートは使ってはいけない。

この問題をどうか、途中式を書いて教えていただけないでしょうか…。お願いします。

288 :132人目の素数さん:2005/04/15(金) 20:24:56
>>284
ありがとうございます
>>285
解き方はどうやって解けばその答えが出ますか?


289 :132人目の素数さん:2005/04/15(金) 20:25:00
>>286
分からないというのは、
質問の背景・文脈、質問者のレベル等
普通はそういった事が伝わらない
それに何故物理板を選ばずに
わざわざ数学板なんだ?


290 :132人目の素数さん:2005/04/15(金) 20:27:03
>>288
左辺が定数倍の違いを除いて等しくなったら、
解が無くなるか、無数に多くなるかいずれか。

入れてみればわかる。


291 :132人目の素数さん:2005/04/15(金) 20:27:41
>>286
数学板ではベクトルとしか・・・

292 :132人目の素数さん:2005/04/15(金) 20:29:32
>>290
分かりました!ありがとうございます。

293 :132人目の素数さん:2005/04/15(金) 20:42:31
>>289,>>291
どうもです。
「数学板ではベクトルとしか」言えないですか。。。
物理版にしようかとも思いましたが。
物理版だと数学的な意見が聞けないと思いまして。
このような反応のあるところからしても数学板でも
結構、量子力学を知っている人はいると思えますが、
量子力学を物理の対象ではなく、
数学の対象として勉強している人とかいたら、、、と思ったもので。。。

294 :132人目の素数さん:2005/04/15(金) 20:52:38
>>287
その45度の部分をあわせて 90度にするとその対角は 180-45度
というあたりから出そうかな。

295 :132人目の素数さん:2005/04/15(金) 21:15:24
>>294
回答ありがとうございます。
45度の部分をあわせたのですが、それによってもとめられる面積がありませんでした…。180-45度をしてしまうと二等辺三角形の2つの角が67.5度と中途半端になってしまいます。

296 :132人目の素数さん:2005/04/15(金) 21:18:04
△ABCにおいて、頂点A,B,Cの対辺の長さをそれぞれa,b,cで表す
(b+c)cosA/a=(c+a)cosB/b   が成り立つ時△ABCはどんな三角形か

お願いします

297 :132人目の素数さん:2005/04/15(金) 21:44:16
>>295
△OABにおいて∠AOB = 45度, OA=OBとする。
∠BOC = 45度 OC=OAで、Aと異なる点Cをとると
∠ABC = 180 - 45度という意味なんだけども。

△OACと△ABCに分けて計算かなと。

298 :132人目の素数さん:2005/04/15(金) 21:47:19
>>296
a=bの二等辺三角形

299 :132人目の素数さん:2005/04/15(金) 21:49:54
ド・メレの問題ってやつで
(35/36)^24 を4×1/6=24×1/36の関係を用いて
簡単に解ける方いませんか?
教えてください。お願いします。

300 :299:2005/04/15(金) 21:53:38
299に追加で、
(5/6)^4=0.4822も使うかもしんないです。
よろしくです。

301 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/15(金) 22:00:33
ブラとケットなんて誰が考え出すのか?
両方とも線形写像と見るか、あるいはヒルベルト空間の元と見るか…。

302 :132人目の素数さん:2005/04/15(金) 22:20:29
>>297
なるほど!わけて計算するんですね。
今、△AOCの面積を求めることができたのですが、△ABCの面積の求め方がわかりません…。これがわかればあとは正方形の面積だけなのですが…。

303 :132人目の素数さん:2005/04/15(金) 23:05:04
>>299
近似値を求めろということ?

304 :132人目の素数さん:2005/04/15(金) 23:10:32
>>302
ACを共通底辺と考えれば
△ABC+△AOCの面積は (1/2) AC*OB = 2AC
従って側面積は 1枚あたり ACの値に等しい。
ただ、AC=4√2で√が入るのでこの時点では
ACの値が何かは考えない。


305 :299:2005/04/15(金) 23:50:37
>>303
いや、近似値ではないです。

306 :132人目の素数さん:2005/04/16(土) 00:06:04
2         2
―a3b−a2b2+―ab3
5         5

を因数分解するとどうなるんですか・・・??

分数があって計算の仕方が分かりません・・・。

よろしければ教えてください・・・!!因みに「2や3」は次数のつもりです。。

307 :132人目の素数さん:2005/04/16(土) 00:15:58
>>305
近似値ではないのならこうなるけど
11419131242070580387175083160400390625/22452257707354557240087211123792674816


308 :132人目の素数さん:2005/04/16(土) 00:18:21
>>306
分数が分かりにくい場合は分数にならないように括る

(2/5) (a^3)b - (a^2)(b^2) + (2/5) a(b^3)
=(1/5){ 2(a^3)b-5(a^2)(b^2) +2a(b^3)}
=(1/5)ab{2(a^2)-5ab+2(b^2)} = (1/5)ab (2a-b)(a-2b)

309 :132人目の素数さん:2005/04/16(土) 00:33:02
すいません この問題よろしくお願いします
x=1-sinT y=t-cosTとする d~2y/dx~2(2回微分)の値を求めよ
答えは1/(1-sinT)cosTなんだけど どうやって解くの?
1回微分は分かるんだけど…

310 :132人目の素数さん:2005/04/16(土) 00:35:33
複素解析や複素幾何などではn次元複素数空間C^nに
どの距離を採用するのが一般的なんですか?

311 :132人目の素数さん:2005/04/16(土) 00:37:38
(1)9時から10時の間で時計の長針と短針が一直線になる時刻を求めよ。
(2)10時から11時までの間で時計の長針と短針が一直線になる時刻を求めよ。

という問題なのですが、(1)も(2)もきれいな値になってくれません・・・
計算ミスなのかそれでいいのかよく分からないです。
どなたか教えてください。

312 :132人目の素数さん:2005/04/16(土) 00:54:44
>>310
自然に、R^(2n)と見たときのをいれておけば。

313 :132人目の素数さん:2005/04/16(土) 00:55:15
>>309
dx/dt=-cost , dy/dt=1+sint , dy/dx=(dy/dt)/(dx/dt)=-(1+sint)/cost

d^2y/dx^2 = (d/dx)(dy/dx) = (dt/dx)(d/dt)(dy/dx)
= {1/(dx/dt)}*(d/dt){-(1+sint)/cost}
=(-1/cost)*{-(cost)^2-(1+sint)*sint}/(cost)^2
=(1+sint)/(cost)^3
=(1+sint)/{(1+sint)(1-sint)cost}
=1/{(1-sint)cost}

314 :132人目の素数さん:2005/04/16(土) 00:55:42
>>311
そういう問題では
綺麗にならないのが普通かと。

315 :132人目の素数さん:2005/04/16(土) 00:58:35
>>311
(1) 6t=(30*9)+(6/12)t ⇔ t=540/11 より、約9時49分5秒
(2) 6t=(30*10)+(6/12)t ⇔ t=600/11 より、約10時54分33秒

316 :132人目の素数さん:2005/04/16(土) 01:08:20
>>314 >>315
ありがとうございます。やはりきれいにはなりませんか・・・。
「時刻を求めよ」とあるのでどう書いたらいいか分からず、計算ミスかと思って
いました。約何時何分何秒と書くしかないみたいですね。
ありがとうございました。

317 :132人目の素数さん:2005/04/16(土) 07:50:29
x/(e^x-1)を積分しろっていう問題が解けません。教えてください。

318 :132人目の素数さん:2005/04/16(土) 08:46:55
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< なにの文字について積分するのですか
  iハ l  (.´ヽ     _   ./    ,' ,' '  | そこらへんをしっかりとかいてくださいね・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



319 :132人目の素数さん:2005/04/16(土) 08:52:47
             /::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\
            /:::::::::::::::::::ノ ̄ヘ::::::;―、::::::::::::::::::::::::ヘ
          /:::::::::::;-' ̄     ̄    ̄ヘーァ:::::::::i
          i:::::::::彡              ミ:::::::::::ヘ
          |:::::::メ   ........        ......,   ヾ:::::::::::|
          |:::ノ   /   ヽ    /   ヽ ミ::::::::::|
          |::| /    _       _    ヾ::::::l
          |::|    イ o ヽ     イ o メ    |::::::|   あんたみたいな小娘の出る幕じゃないのよ!!!
          |ノ i    `ー'ノ i    ヽ` ~    イ::イ   早よ引っ越しせにゃ。いい加減にしないとしばくぞ!!!
          | j }    ~~  ノ;            い
          ゝ:.:.{: . : .    γ    ,、 )、      i丿
          厶:.:.ヾ : .    ` ''`  ~   ヽ     ノつ
          /i:.:.:.:. : .       ,_    i    /
        /  ヘ:.:.:. : .  i   ハニエ!-!‐ヽ |    ,イゝ、__
      /|     ヘ:.: .  │〈.:.:.:.:.:.:.:.:.:.:ノ ノ    /   \:;:- 、 _
    /:;:;:;:;ヽ     ヽ   ! ヾエエEァ´     /      i:;:;:;:;:;:;:;\
  /:;:;:;:;:;:;:;:;:;:ヽ      \  ゝ、:::::::::::  '   ノ       |:;:;:;:;:;:;:;:;:;:;ヘ
/:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;ヽ      \        /       /:;:;:;:;:;:;:;:;:;:;:;:;:;i
:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:ヽ       ` ー--― '         /:;:;:;:;:;:;:;;:;:;:;:;:;:;:;:;ヽ
:;:;:;:;:;:;:;:;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;\                    /:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;|
:;:;:;:;:;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;\                 /:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;|




320 :132人目の素数さん:2005/04/16(土) 09:08:45
>>317
誰にいわれたの?僕ちゃんw

321 :132人目の素数さん:2005/04/16(土) 09:51:41
>>317
でないよ

322 :132人目の素数さん:2005/04/16(土) 10:26:25
king氏ね

323 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/16(土) 10:29:09
Re:>322 お前が先に氏ね。

324 :132人目の素数さん:2005/04/16(土) 10:29:25
>>313
どうもありがとう

325 :317:2005/04/16(土) 10:42:31
xについてです

326 :132人目の素数さん:2005/04/16(土) 11:06:27
kingよ、また下らない数学の研究やってんのか?

327 :132人目の素数さん:2005/04/16(土) 12:39:56
>>325
積分できないと思うよ。
或いは級数展開して項別積分でもするか?

328 :132人目の素数さん:2005/04/16(土) 13:00:50
スレの趣旨とは少し違うけど。

aが200、bが400だったとする。
cの数値が200の場合、答えは0
400の場合、答えは100
300の場合、答えは50
350の場合、答えは75

要するにこの計算をする為の式が欲しいのです。

329 :132人目の素数さん:2005/04/16(土) 13:05:44
>>328
cの大きさで並べてみると
c
200 0
300 50
350 75
400 100

だから

(c-200)÷2

aとかbは関係ない

330 :328:2005/04/16(土) 13:13:49
>>329
aとbに囚われすぎでそんな簡単な式だとは気付かなス。
助かったよ!ありがd。

331 :132人目の素数さん:2005/04/16(土) 13:31:04
ラプラス逆変換の式
f(t)=(1/2πj)∫[c-j∞,c+j∞]F(s)e^(st)ds
で積分区間のj∞の定義を教えてください

332 :328:2005/04/16(土) 13:35:24
って・・・何か違う気が。
最初にaとbを定義したのはaとbの値が決まっていないからであって・・・。
もしa、5000  b、7000でその式で計算した場合、cが5000の場合0、6000の場合50、7000の場合100にはならない。
どうすりゃいいんだべorz


333 :132人目の素数さん:2005/04/16(土) 13:44:10
>>331
定義も何も、z(t)=c+jt (j:虚数単位) という直線上で積分しているだけだろ。


334 :132人目の素数さん:2005/04/16(土) 14:06:07
>>332
aと bを変化させたときの値がわからない以上は
わかるわけがないでしょう。

335 :328:2005/04/16(土) 14:08:33
>>334
そうなのか・・・残念。
別の方法取るしか無いな。

336 :132人目の素数さん:2005/04/16(土) 14:40:44
問題とかそういうのじゃないんですけど
x^2 + y^2 + xy√2 = z^2
x^2 + z^2 - xz√3 = y^2

を満たして、かつ
√((((2+√3)x^2)/3) + y^2)の二重根号が外れるような実数xyzってないですか?
なんか、ぷろぐらむ(?)みたいなの使って探せませんか?

337 :336:2005/04/16(土) 14:45:26
すいません、x≠0,y≠0,z≠0でお願いします

338 :336:2005/04/16(土) 14:48:57
あ、もう一つ。xもyもzも二重(もしくは二重以上の)根号にならないようにしてください。
そんな実数あるんかなあ・・。

339 :132人目の素数さん:2005/04/16(土) 15:24:10
実数というだけならいくらでもありそうな気が

340 :336:2005/04/16(土) 15:25:02
なんか探す方法ないすか?

341 :132人目の素数さん:2005/04/16(土) 15:27:10
2x+(√2)y-(√3)z = 0が成り立つから、zを消去すると、
xとyの関係式が得られ、二次式を解く事によって、xだけの式になる筈

342 :132人目の素数さん:2005/04/16(土) 15:32:06
>>336
答は無数にあると思うが、一つだけ求めればいいのか?
それとも全て求めたいのか?


343 :336:2005/04/16(土) 15:40:00
>>341
xだけの式に・・??

>>342
1つで結構です。あと、大切なこと忘れてたけどxyzは正の実数でお願いします

344 :336:2005/04/16(土) 15:41:18
まとめるとこうです

x^2 + y^2 + xy√2 = z^2
x^2 + z^2 - xz√3 = y^2

を満たして、かつ
√((((2+√3)x^2)/3) + y^2)の二重根号が外れるような正の実数xyz
ただしxyzは二重(もしくはそれ以上の)根号にならないように

345 :132人目の素数さん:2005/04/16(土) 15:58:56
>>344
まとめると
x^2 + y^2 + xy√2 = z^2
2x+(√2)y-(√3)z = 0

だから
3x^2 + 3y^2 +3xy√2 = (2x+(√2)y)^2
となり
x^2 +(√2)xy -y^2 = 0
を満たすような, x, yに対して

√((((2+√3)x^2)/3) + y^2)がどうなるか?を考える

346 :132人目の素数さん:2005/04/16(土) 16:54:36
復旧したか?

347 :132人目の素数さん:2005/04/16(土) 17:34:19
すいません この問題よろしくお願いします
log6=a、(log2)*(log3)=bのとき、log22.5をa,bを用いて表せ
答えは2√(a~2-4b)+1なんだけど解き方がわかんないっす

あと、もう1問お願いします
y=e~x+e~2xの逆関数を求めよ
答えはy=log{√[x+(1/4)]}なんですけどこれも解き方がわかんないっす
2問もお願いしてすいません

348 :132人目の素数さん:2005/04/16(土) 17:40:10
β語に似ているな。
>なんか探す方法ないすか?
>解き方がわかんないっす

349 : ◆27Tn7FHaVY :2005/04/16(土) 17:43:01
底は10?

X=log2, Y=log3とおけば
X+Y=a
XY=b
つまり、X,Yは2次方程式t^2-at+b=0の解(X<Y)

350 : ◆27Tn7FHaVY :2005/04/16(土) 17:43:32
俺もそう思った。失敗したか>>348

351 :132人目の素数さん:2005/04/16(土) 17:45:38
底は10です
よろしくお願いします

352 :132人目の素数さん:2005/04/16(土) 17:49:12
>>347
log22.5=log(45/2)=log45-log2=log(3^2*10/2)-log2
=2log3-2log2+1
=2(log3-log2)+1

log2, log3 は xの2次方程式 x^2-ax+b=0 の2解。
α=log2 , β=log3 とおくと、
(β−α)^2=(β+α)^2-4αβ=a^2-4b
よって、β−α=√(a^2-4b) ( >0)
したがって、
与式=2(β−α)+1=2√(a~2-4b)+1

次のは t=e^x (>0)とでもおけばいい。

353 :132人目の素数さん:2005/04/16(土) 17:51:01
>>350
>あと、もう1問お願いします

これも怪しい!

354 :132人目の素数さん:2005/04/16(土) 17:55:47
あと「感謝の言葉」がないのもβ語の特徴。

355 :132人目の素数さん:2005/04/16(土) 18:01:55
>347
(1) log(22.5) = log{10・(3/2)^2} = 1 + 2[log(3)-log(2)] = 1 + 2√(a^2 -4b).
(2) √[y+(1/4)] を計算してみる。 x = ln{√[y+(1/4)] -1/2}.

356 :132人目の素数さん:2005/04/16(土) 18:03:16
返事が遅れて申し訳ない
どうもありがとうございました

357 :132人目の素数さん:2005/04/16(土) 18:23:57
ぼう読み

358 :132人目の素数さん:2005/04/16(土) 18:54:34
形式的

359 :132人目の素数さん:2005/04/16(土) 19:21:22
儀礼的

360 :132人目の素数さん:2005/04/16(土) 19:23:06
わざとらしい

361 :132人目の素数さん:2005/04/16(土) 19:24:10
>返事が遅れて申し訳ない
何だか威張ってる!

362 :132人目の素数さん:2005/04/16(土) 20:03:07
この問題お願いします。
問題:次の不等式を証明せよ。また等号が成り立つのはどのようなときか。
la−bl≦lal+lbl
ここから証明
 (lal+lbl)^2−la−bl^2
=lal^2+2lalbl+lbl^2−la−bl^2
=a^2+2labl+b^2−a^2+2ab−b^2
=2(labl+ab)≧0
よってla−bl^2≦(lal+lbl)^2
la−bl≧0
lal+lbl≧0より、
la−bl≦lal+lbl
等号が成り立つのはlabl=−abのとき。
すなわちab<0 のときである。

質問1.=2(labl+ab)≧0
なぜこの式で「≧0」が示せるのかがわかりません。
質問2.la−bl≧0 この式以下が理解できません。

よろしくお願いします。

363 :132人目の素数さん:2005/04/16(土) 20:05:27
べーた!べーた!べーた!べーた!べーた!

364 :132人目の素数さん:2005/04/16(土) 20:08:19
>>362
1.a,bが正または負の場合を全て調べてみればいい。
2.不等式の両辺の2乗の大きさを比べたわけだが、
両辺が非負でないと2乗したとき大小の関係が保てない。

365 :132人目の素数さん:2005/04/16(土) 20:29:19
「質問ロボβ」も進化してきたか?判定が難しくなる悪寒。
判定はβ語と食い下がり方のパターンと
計算をしてみないという特徴のチェックが基礎か。面白い!

366 :132人目の素数さん:2005/04/16(土) 20:32:22
x,y,m,nは相異なる自然数である。
lx^2-y^2l=lm^2-n^2l
を満たす、x,y,m,nを求めるための解法をもとめよ。

367 :132人目の素数さん:2005/04/16(土) 20:33:24
因みにβ判定で重要なもので絶対下げないというのがあります。

368 :132人目の素数さん:2005/04/16(土) 20:34:19
「何だか威張ってる!」パターンに警戒警報

369 : ◆27Tn7FHaVY :2005/04/16(土) 20:35:24
今春、全米最大のスペクタクル「βロボ 対 人類  ・・・君はヒトの未来を見る」












つまらなさそうだ  


370 :132人目の素数さん:2005/04/16(土) 20:36:05
>>367
専用スレではsageていましたよ。

371 :132人目の素数さん:2005/04/16(土) 20:38:10
>>370
いや、一回も下げてない。

372 :132人目の素数さん:2005/04/16(土) 20:38:25
「x,y,m,nを求めるための解法」という表現は不自然。β警報。

373 :132人目の素数さん:2005/04/16(土) 20:40:28
>>371
age,sageはもはや無意味。βは進化する!

374 :132人目の素数さん:2005/04/16(土) 20:40:40
lx^2-y^2l=lm^2-n^2l=kとしてみましょう。
k=32の時を考えてみましょう。
32=8*4=16*2ですから、
6^2-2^2=9^2-7^2となりますよね。
k=15の時を考えてみましょう。
4^2-1^2=8^2-7-2となります。
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  これがヒントです
  iハ l  (.´ヽ     _   ./    ,' ,' '  | ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



375 :132人目の素数さん:2005/04/16(土) 20:41:45
こらべーた。もっと発言しろ!でないとゲームにならんぞ。

376 :132人目の素数さん:2005/04/16(土) 20:44:08
>>374
ああ、いいヒント出現。>>366さん応答してくだはい。

377 : ◆27Tn7FHaVY :2005/04/16(土) 20:46:12
やみくもに問題を一般化する。これをべーた化と言う

378 :132人目の素数さん:2005/04/16(土) 20:47:53
>>367
質問スレで下げる必要はあるまい

379 :132人目の素数さん:2005/04/16(土) 20:48:37
ベータ化って
ご飯が乾く事だっけ?


380 :132人目の素数さん:2005/04/16(土) 20:50:07
何も理解することなく、続々と質問をでっち上げる。
これべーたが極意なり。その行為の無意味たるや甚だし。
これをもって余はべーたをロボットと認定せり。

381 :132人目の素数さん:2005/04/16(土) 20:51:43
>>376
ホントごめん。k=32とかK=15とかって適当に決めてんの?
そんなことないよね。。。。。。ちょっと考えて見ます。ヒントサンクス。

382 : ◆27Tn7FHaVY :2005/04/16(土) 20:53:31
べーたカウンターが振り切れた

383 :132人目の素数さん:2005/04/16(土) 20:58:10
>>379
糊化したデンプンをαデンプンと呼び、天然の結晶状態にあるデンプンを
βデンプンと呼ぶ。 β化というのはαデンプンがβデンプンになること。

384 :132人目の素数さん:2005/04/16(土) 20:59:46
>ホントごめん

β語指数が高い!

385 :132人目の素数さん:2005/04/16(土) 21:02:35
>>383
成る程

386 :132人目の素数さん:2005/04/16(土) 21:12:01
>>374
ここがよくわからない。

「32=8*4=16*2ですから、
6^2-2^2=9^2-7^2となりますよね。」

式が成り立つのは分かるけど、なんでそんな風に変形できるのか分からない。
ここのところ詳しくお願いします。

387 :132人目の素数さん:2005/04/16(土) 21:22:26
>>386
x=a+b y=a-bとすると
a=(x+y)/2 b=(x-y)/2
a^2-b^2=xy

(x,y)=(8,4)と(16,2)をそれぞれ代入してみそ
他にも偶数×偶数か奇数×奇数の形に二通りに表せる数なら同様にできる。

388 :132人目の素数さん:2005/04/16(土) 21:29:08
ラプラス変換
(1) f(t)=e^2t
(2) f(t)=te^at
(3) f(t)=sinh at
(4) f(t)=e^at sin ωt
ラプラス逆変換
(5) F(s)=2s+3/s^2+5s+6
(6) F(s)=1/(s+1)(s-2)^2
(7) F(s)=e^-as/s^2
微分方程式をラプラス変換で解く
(8) (d^2 y/dt^2)+2y=5t

以上の問題を教えてください。

389 :132人目の素数さん:2005/04/16(土) 21:30:37
>>387
理解しました。詳しくどうも。

390 :132人目の素数さん:2005/04/16(土) 21:32:04
(8) 追加
ただし、t>0, y(0)=1,dy/dt=-2

391 :132人目の素数さん:2005/04/16(土) 21:36:26
>>388
氏ね。

392 :132人目の素数さん:2005/04/16(土) 21:39:58
変換表みてみたらすぐできるでしょ

393 :132人目の素数さん:2005/04/16(土) 21:47:58
393/22=17+19/22.


394 :132人目の素数さん:2005/04/16(土) 21:59:08
将棋盤は81升あるんだが
この升目に米を一粒、隣に
倍の2粒、という具合に
倍倍に米粒を置いていくと
全部で幾つになるの?
式も教えてくれる?

395 :132人目の素数さん:2005/04/16(土) 22:03:00
>>394
「2^80」でググれ

396 :132人目の素数さん:2005/04/16(土) 22:10:40
>>394
秀吉だっけ?

397 :132人目の素数さん:2005/04/16(土) 22:14:47
>>388
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< 定義を使って計算してください
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 積分の練習ができますよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


398 :132人目の素数さん:2005/04/16(土) 22:17:19
将棋盤は81桝あるんだが
この桝にデンプンを1分子、
隣に倍の2分子、という具合に
倍倍に分子を置いていくと
全部で何モルになるの?
式も教えてくれる?
(1モル≒6.022142×10^23 分子)

399 :132人目の素数さん:2005/04/16(土) 22:22:27
(2^81-1)/(6.022142×10^23 )

400 :132人目の素数さん:2005/04/16(土) 22:33:57
囲碁盤は361眼あるんだけど、ある一眼Pを選んだとき、他の360眼から2眼を選んで
できうる三角形の個数をN(P)とするとき、N(P)の最大値、最小値はいくつになるの?
式も教えてくれる?

401 :132人目の素数さん:2005/04/16(土) 22:33:59
 ≒ 4.014936モル

400げとー

402 :132人目の素数さん:2005/04/16(土) 22:34:50
12,000,000,000,000,000,000,000,000粒ですた。(´・ω・`)
単位も分らないです。orz
thx

403 :132人目の素数さん:2005/04/16(土) 22:41:45
うはwwww
激務図!!!

404 :132人目の素数さん:2005/04/16(土) 22:42:17
12序

405 :132人目の素数さん:2005/04/16(土) 22:42:55
>>392
まだ習ってなくて、教科書とかもないのですが、レポート出さなきゃいけないんです。
解いて頂けないでしょうか。

406 :132人目の素数さん:2005/04/16(土) 22:48:43
>>400できたら神

407 :132人目の素数さん:2005/04/16(土) 23:01:17
>>405
嫌です。
定義から計算してください。

408 :132人目の素数さん:2005/04/16(土) 23:37:59
>>362
質問1.=2(labl+ab)≧0

任意の実数 a に対して |a|≧a   ・・・・・・@
                |a|≧−a  ・・・・・・A
の両方が成り立つ。
@の両辺から a を引いて  |a|−a≧0 ・・・・・・B
Aの両辺に a を加えて    |a|+a≧0 ・・・・・・C
このBCの両方が成り立つ。

Cの a を ab に置き換えれば |ab|+ab≧0

409 :132人目の素数さん:2005/04/16(土) 23:52:27
>>362
>質問2.la−bl≧0 この式以下が理解できません。

この証明は
---------------------------------------------------
  A≧0,B≧0のとき、 A^2≧B^2 ならば A≧B である
---------------------------------------------------
という真なる命題に基づいている。
 ( A=|a|+{b| ,B=|a−b| としてこの命題を利用している。)

    (lal+lbl)^2−la−bl^2
   =lal^2+2lalbl+lbl^2−la−bl^2
   =a^2+2labl+b^2−a^2+2ab−b^2
   =2(labl+ab)≧0
   よってla−bl^2≦(lal+lbl)^2

以上の部分は A^2≧B^2 である事を示している。

   la−bl≧0
   lal+lbl≧0より

以上の部分で A≧0,B≧0 である事を主張している。
これにより、上の命題の仮定が満たされている事が分かるので
結論 A≧B が成り立つ事を主張できる。すなわち

   la−bl≦lal+lb

というストーリーです。



410 :336:2005/04/16(土) 23:55:23
>>345
全然わかりません・・。345さんはxyz探せましたか?
ずばっと値だけ教えてほしいんですけど・・。

411 :132人目の素数さん:2005/04/16(土) 23:58:50
べーたよ。去れ!

412 :132人目の素数さん:2005/04/17(日) 00:42:41
ペーターふらんくる?

413 :132人目の素数さん:2005/04/17(日) 00:43:26
>>410
とりあえず、一変数で表してみれば?

414 :132人目の素数さん:2005/04/17(日) 00:44:05
>>410
二次方程式くらいは解けるんだよね?

415 :132人目の素数さん:2005/04/17(日) 01:06:45
>>405
検索すると見つかるよ、変換表が。

416 :336:2005/04/17(日) 01:50:37
>>413
x^2 +(√2)xy-y^2=0 からx=(√2(√3-1)y)/2ですyおね。
これを√((((2+√3)x^2)/3) + y^2)に代入してみましたら、√(y/3)となりましたが
だから何?っていって終わりました・・・。

>>414
新中3で、学校ではまだやってないけど、一応解けます・・。

417 :336:2005/04/17(日) 01:59:17
間違えた。√((((2+√3)x^2)/3) + y^2)=2√(y/3)ですね。

418 :132人目の素数さん:2005/04/17(日) 02:03:16
>>416
その計算が正しいとして

問題をまとめると
2√(y/3)が二重根号にならないようにyを取れば

x=y(√3-1)/√2
は二重根号を含まないし

2x+(√2)y-(√3)z = 0
から求まるzも二重根号を含まないだろう。

419 :336:2005/04/17(日) 02:03:48
x^2 + y^2 + xy√2 = z^2....(1)
x^2 + z^2 - xz√3 = y^2.....(2)

(1)と(2)から2x+(√2)y-(√3)z=0...(3)という関係式がでてきますが
x=1,y=2√2,z=2√3は(3)を満たすのに(1)(2)を満たさないのはなぜですか??わけわかめ・・。

420 :336:2005/04/17(日) 02:08:27
>>418
2x+(√2)y-(√3)z = 0 をみたすxyzがx^2 + y^2 + xy√2 = z^2と
x^2 + z^2 - xz√3 = y^2を満たさないんですけど・・何でですか?

421 :132人目の素数さん:2005/04/17(日) 02:34:57
>>419
(1)と(2)を同時に満たす

(1)と(3)を同時に満たす

だから、(3)を満たす値だけとってきて (1)を満たさないといってもそれは当然のこと。

(1)と(3)を同時に満たすものを持ってこないと。

そのx,y,zを見つけるために (3)を
z = 〜
という形で書いて
(1)に代入して、xとyの関係式を出したのだろう。これを(4)とすると

(4)を満たす x,yから、(3)によってzが求まるという流れになる。


422 :132人目の素数さん:2005/04/17(日) 02:49:20
あらら、いつの間にべーたが新中3に。
先日までは新高2だと聞いていたがwww

423 :336:2005/04/17(日) 02:55:54
>>421
すげー!めっちゃめっちゃ頭いいですねえ。
こんな時間まで起きてた甲斐がありました。晴れて(x,y,z)=(√6-√2,2,2√2)の一組が見つかりました。
ありがとうございました。

>>422
βってだあれ?

424 :132人目の素数さん:2005/04/17(日) 03:17:10
>>423
「質問ロボβ」のことでつ。
最近はいろいろなものに変身できるやうになりますた。
でもまだ、ときどき、β語が出てしまうのでつよ。改造せねば。

425 :132人目の素数さん:2005/04/17(日) 10:56:41
そのβってのは
何が語源なんだ?

426 :132人目の素数さん:2005/04/17(日) 11:13:55
>>425
教えてクン逝ってよし。スレ内検索くらいしろよ厨が

427 :132人目の素数さん:2005/04/17(日) 11:54:38
お米が乾くこと
が語源です

428 :132人目の素数さん:2005/04/17(日) 12:28:13
確率の計算です。
12個の玉のうち1個が当たりで、同時に4個取り出します。
これを14回くりかえすとき、3回当たる確率を求めなさい。
取り出した玉は毎回戻すものとします。

429 :132人目の素数さん:2005/04/17(日) 12:35:59
             /::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\
            /:::::::::::::::::::ノ ̄ヘ::::::;―、::::::::::::::::::::::::ヘ
          /:::::::::::;-' ̄     ̄    ̄ヘーァ:::::::::i
          i:::::::::彡              ミ:::::::::::ヘ
          |:::::::メ   ........        ......,   ヾ:::::::::::|
          |:::ノ   /   ヽ    /   ヽ ミ::::::::::|
          |::| /    _       _    ヾ::::::l
          |::|    イ(:::)ヽ     イ(:::)メ    |::::::|
          |ノ i    `ー'ノ i    ヽ` ~    イ::イ
          | j }    ~~  ノ;            い
          ゝ:.:.{: . : .    γ    ,、 )、      i丿
          厶:.:.ヾ : .    ` ''`  ~   ヽ     ノつ
          /i:.:.:.:. : .       ,_    i    /
        /  ヘ:.:.:. : .  i   ハニエ!-!‐ヽ |    ,イゝ、__
      /|     ヘ:.: .  │〈.:.:.:.:.:.:.:.:.:.:ノ ノ    /   \:;:- 、 _
    /:;:;:;:;ヽ     ヽ   ! ヾエエEァ´     /      i:;:;:;:;:;:;:;\
  /:;:;:;:;:;:;:;:;:;:ヽ      \  ゝ、:::::::::::  '   ノ       |:;:;:;:;:;:;:;:;:;:;ヘ
/:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;ヽ      \        /       /:;:;:;:;:;:;:;:;:;:;:;:;:;i
:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:ヽ       ` ー--― '         /:;:;:;:;:;:;:;;:;:;:;:;:;:;:;:;ヽ
:;:;:;:;:;:;:;:;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;\                    /:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;;|
:;:;:;:;:;::;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;\                 /:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;|
:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:\             /:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;:;|

430 :132人目の素数さん:2005/04/17(日) 12:45:15
(14C3)(1/3)^3(2/3)^11

431 :428:2005/04/17(日) 13:02:35
分かりました。ありがとうございました

432 :132人目の素数さん:2005/04/17(日) 14:38:22
>>307

わかりました、ありがとうございます・・・!!

えっと、

(4/3)(x^2)-(1/3)xy-(1/2)(y^2)

という問題を教えていただいたように自分でやってみたのですが、

答えは(1/6)(4x-3y)(2x+y)という感じになりました。

これで答えはよろしいのでしょうか・・・??

433 :132人目の素数さん:2005/04/17(日) 14:42:49
>>432
いいよ

434 :132人目の素数さん:2005/04/17(日) 15:00:13
>>434

よ、よかった・・・ありがとうございました!!

435 :132人目の素数さん:2005/04/17(日) 15:22:08
点(1,12)を通る傾きmの直線と、円x^2 + y^2 -2x-4yについて、直線と円が接するときのmの値と、接点の座標を求めよ。

(1,12)を通り傾きmの直線を
y-12=m(x-1)つまりy=mx-m+12とおく。
これを円の式に代入して
(x-1)^2 + (mx-m+10)^2=5


この先がさっぱりわかりません。
教えてください。


436 :132人目の素数さん:2005/04/17(日) 15:24:41
>>435
マルチはやめよう。

437 :132人目の素数さん:2005/04/17(日) 15:24:58
>>427
β米がα化して最後にγ米になるんじゃなかった?

438 :132人目の素数さん:2005/04/17(日) 15:27:27
>>436
いえ、あっちの問題は

「mの範囲を求めよ」というものでして、実は問題が違うんです。。

439 :132人目の素数さん:2005/04/17(日) 15:36:43
そうですか。でもやり方は同じと思われ。
あっちに書いといたので見といて。

440 :132人目の素数さん:2005/04/17(日) 15:40:12
>>439
わかりました。すみませんでした。。

441 :132人目の素数さん:2005/04/17(日) 15:41:31
実数の集合Rの部分集合AをA={x|0≦x<2}と与えるとき,
Aは上に有界か。上に有界であればAの上限を求めよ(必ず証明も
添えること)。という問題を大学の解析学の講義の演習で出題されて
次のように解いたのですが、これで証明になっているのでしょうか?
(解)例えば3を上界としてとることができるので上に有界である。
また任意のa∈Aに対して、a≦2であり、a´<2とすると
a´<aをみたすa∈Aが存在する。よってAの上限は2である。
ただ、教官は上限の定義で最小の上界であるという部分をεを用いて
表していて、この演習問題でもεを用いて証明していたのですが、
僕の考えたεを用いていない上の証明でも合っているのでしょうか?
よろしくお願いします。

442 :132人目の素数さん:2005/04/17(日) 15:48:42
感覚的にはあってるけど証明になってない。
なぜ、3が上界になるか?上界の定義は?

443 :132人目の素数さん:2005/04/17(日) 15:57:18
>>441
当たり前のことを定義から再構築していく段階だと、
一見当たり前のことでも証明の前提として使えないことがある。
その講義でどこまで定義・証明済みか分からないと、
その証明が適切かどうか判断に迷う。

とりあえず「a´<2とすると a´<aをみたすa∈Aが存在する。」が
自明なのか怪しいと思う。
そこの所をもう少し詳しく書いた方が良さそう。

444 :132人目の素数さん:2005/04/17(日) 15:58:17
>>435
円の方程式が x^2 + y^2 -2x-4y と不完全なんだが
たぶん (x−1)^2+(y−2)^2=5 だろうと勝手に決めて話をすると・・・

両者の共有点の座標は
連立方程式
   y=mx−m+12       ・・・・・・@
   (x−1)^2+(y−2)^2=5 ・・・・・・A
の解。
あなたは、この解を求める為に@をAに代入して、そこで止まっている。
(x−1)^2+(mx−m+10)^2=5 ・・・・・・B

Bの x についての2次方程式を解けば、共有点の x 座標が求まる訳だ。
まずはBを x について整理しよう。

それから、@とAが接する為にはBが重解を持つ事が条件となる。
Bが重解を持つ条件を考えよう。

445 :132人目の素数さん:2005/04/17(日) 16:17:20
>>441
講義では上限の定義はどうなってるの?

Rの部分集合Aに対して
@任意の a∈A に対して a≦s である
A任意の a∈A に対して a≦s’ ならば s≦s’ である
以上の2つの条件を満たす s を集合Aの上限という。

こんな感じ?違う?

446 :132人目の素数さん:2005/04/17(日) 18:06:09
>>442
「例えば3を上界としてとることができるので上に有界である。」という所
を「任意のa∈Aに対して、a≦3であるから,Aは上に有界である。」と
書き直せば合っているでしょうか?それともまだ証明としては不完全でしょ
うか?
>>443
大学での講義は別として一般的に、例えば大学院入試等でこのような問題が
出題されたような場合、>>441のような証明の仕方でかつ「3を上界として
とることができる。」という部分を上のように書き直せばOKですか?

447 :132人目の素数さん:2005/04/17(日) 18:26:51
ラプラス逆変換
(1) F(s)=2s+3/s^2+5s+6
(2) F(s)=1/(s+1)(s-2)^2
(3) F(s)=e^-as/s^2
微分方程式をラプラス変換で解く
(4) (d^2 y/dt^2)+2y=5t ただし、t>0, y(0)=1,dy/dt=-2

以上の問題を教えていただけないでしょうか。 お願いします。

448 :132人目の素数さん:2005/04/17(日) 18:29:06
>>447
分数などはどこからどこまでが分子で分母で…ということがわかるように括弧を沢山使って表現するように

449 :132人目の素数さん:2005/04/17(日) 18:33:57
ラプラス逆変換
(1) F(s)=(2s+3)/(s^2+5s+6)
(2) F(s)=1/{(s+1)(s-2)^2}
(3) F(s)=(e^-as)/(s^2)
微分方程式をラプラス変換で解く
(4) {(d^2 y)/(dt^2)}+2y=5t ただし、t>0, y(0)=1,dy/dt=-2

すいません。よろしくお願いします。

450 :132人目の素数さん:2005/04/17(日) 18:35:14
これは全く同じ問題が過去ログのどこかに転がっているような

451 :132人目の素数さん:2005/04/17(日) 18:53:25
>>441
>a´<aをみたすa∈Aが存在する。

具体的に a を示さないとダメでしょうね。

452 :132人目の素数さん:2005/04/17(日) 19:00:21
>>449
まず分母を因数分解して部分分数分解してみて

453 :わかりますか?:2005/04/17(日) 19:06:09
傾いた平面上で最も急な勾配(傾き)が1/3であるという。いま南北方向の勾配を測ったところ1/5であった。東西方向の勾配はどれだけか。

454 :132人目の素数さん:2005/04/17(日) 19:10:30
僊BCの重心Gをとおる直線が辺AB、ACと交わっている
この直線と辺ABとの交点をP
辺ACとの交点をQとおき定数k.Lを
AP↑=kAB↑、AQ↑=LAC↑とする。 (k.L)のえがく軌跡を求めよ

お願いします

455 :132人目の素数さん:2005/04/17(日) 19:14:39
>>452
しました。その先はいろいろ調べてみたのですが、やっぱりわかりませんでした。

456 :132人目の素数さん:2005/04/17(日) 19:27:49
点(1,12)を通る傾きmの直線と、円x^2 + y^2 -2x-4yについて、直線と円が接するときのmの値と、接点の座標を求めよ。

(1,12)を通り傾きmの直線を
y-12=m(x-1)つまりy=mx-m+12とおく。
これを円の式に代入して
(x-1)^2 + (mx-m+10)^2=5


この先がさっぱりわかりません。
教えてください。

457 :132人目の素数さん:2005/04/17(日) 19:30:49
>>456
そのxにおける二次方程式が重解を持てばいいんじゃない?
ということは判別式が…

458 :132人目の素数さん:2005/04/17(日) 19:31:45
【問題】(場合分け)

A君,B君,C君,D君,E君の5人に、合計24本のうまい棒をキッチリ分け与えます。
一人が少なくとも2本以上、最高10本までもらえるとすると
5人へのうまい棒の配分の仕方は何通り考えられるでしょうか。
(ただし、1本のうまい棒を割ったり、ちぎって捨てたりしちゃダメよ。)


これ、誰かおながいします。

459 :132人目の素数さん:2005/04/17(日) 19:44:00
>>456
同じ問題(判別式が正か0か)なんだからマルチするな!

460 :132人目の素数さん:2005/04/17(日) 20:08:51
>>453
もっとも急な勾配の向きをy軸、それに垂直な向き(勾配が無い方向)をx軸とする。
南北方向に5だけ進んだとすると、南北方向の勾配は1/5だから高さは1変化する。
この時、y軸方向には3進んだはず(y軸方向の勾配は1/3だから)。
三平方の定理によりx軸方向の移動量は4。

ということは、y軸方向に4、x軸方向に-3進めば南北とは垂直な方向=東西に5進むはず。
この時、高さは4/3変化するはず。
5進んで高さが4/3変化するのだから、勾配は(4/3)/5=4/15

461 :132人目の素数さん:2005/04/17(日) 20:22:08
>>453
空間内の原点を通る平面 ax+by+cz=0 を考える。
一般性を失うことなく a^2+b^2+c^2=1 , a,b,c>0 としてよい。
x軸方向を南北方向と見ると c=5a
最も急な勾配(傾き)が1/3であることから c=3√(b^2+c^2)
これらより a=3/(5√10) , b=4/(5√10) , c=3/√10
東西方向の勾配は b/c=4/15

462 :132人目の素数さん:2005/04/17(日) 20:25:04
>c=3√(b^2+c^2)
c=3√(a^2+b^2)

463 :132人目の素数さん:2005/04/17(日) 22:38:31
>>458
とりあえず、みんなに1本ずつ配っておくと残り19本の配分だけを考えることになる。

○○|○|○○○…○○|○○

みたいに仕切りを4本入れて、左からA君、B君…と取ってもらうことにすれば

18C4 通り

464 :132人目の素数さん:2005/04/17(日) 22:41:48
あれ?


465 :453です:2005/04/17(日) 23:46:57
解答がちょっと分からなかったのですいませんがもっと詳しくお願いします!

466 :132人目の素数さん:2005/04/17(日) 23:49:09
>>465
偉そうに聞いてんじゃねえヴァカが

467 :べたべーた:2005/04/18(月) 00:03:44
>>465
解答が意味不明でした!文章力ないんですか?!もっと詳しく書いてくださいよ全く!
てハッキリ言ったほうがいいよ。

468 :132人目の素数さん:2005/04/18(月) 00:03:51
>>465
どこらへんが分からないの?

469 :132人目の素数さん:2005/04/18(月) 00:06:39
最高本数が決まってるのにそれを全く考慮してないところ

470 :132人目の素数さん:2005/04/18(月) 00:11:20
(18C4) - 5*{(8C3)+(7C3)+(6C3)+(5C3)+(4C3)+(3C3)} = 2430 とおり

471 :132人目の素数さん:2005/04/18(月) 00:14:53
(18C4) - 5*(9C4) = 2430[通り] としたほうがわかりやすくて(・∀・)イイ!

472 :132人目の素数さん:2005/04/18(月) 01:29:05
>>454
AG↑ = (1/3){AB↑+AC↑}

GはPQ上にあるのだから、
AG↑ = s AP↑+(1-s)AQ↑ = sk AB↑+(1-s)L AC↑
とも書けるので

sk = (1/3)
(1-s)L = (1/3)
から、sを消去。

0≦s≦1にも注意

473 :132人目の素数さん:2005/04/18(月) 02:30:16
M={13x−22y=1,x、y=整数}、N={x=227k+35,y=13k+2,k=整数}のとき、M=Nであることの証明はどうすれば…

474 :132人目の素数さん:2005/04/18(月) 02:47:10
>>473
問題がおかしい。

475 :132人目の素数さん:2005/04/18(月) 11:14:54
>>473
13と22は互いに素だから、

x = 22k +a
y = 13k +b

の形になるよ

476 :132人目の素数さん:2005/04/18(月) 14:05:40
473です。問題集にそう書いてあったんですが、227kじゃなくて22kってことですか??ではx=22k+35の場合の問題の解き方を教えてください。

477 :132人目の素数さん:2005/04/18(月) 15:03:32
>>476
13*17-22*10 = 1
だから

13x−22y=1と引き算して

13(x-17)-22(y-10)=0

13(x-17)=22(y-10)
13と22は互いに素だから

x-17 = 22kと置ける。
この時
y-10 = 13kとなり、
x = 22k+17
y = 13k+10

の筈

478 :132人目の素数さん:2005/04/18(月) 15:39:47
>>473
(17,2)∈M
一方
y=13k+2=2 ならば x=227k+35=35
よって(17,2)∈N

∴M≠N

479 :132人目の素数さん:2005/04/18(月) 15:54:08
Mは集合じゃないし

480 :132人目の素数さん:2005/04/18(月) 17:39:04
a+b+c+d+e=45 0≦a,b,c,d,e≦15
を満たす整数解の個数を求めよ

という問題なのですが、どなたかお願いします

481 :132人目の素数さん:2005/04/18(月) 17:45:54
>>480
数値は違うが>>458に対する回答が参考になるかと。

482 :132人目の素数さん:2005/04/18(月) 19:23:22
次の連立1次方程式が解を持つようにa,b,cを定めて解く。

・ x −     2y =  7
・3x + (a+2)y = −9
・ax +      y = −1

問題集に解説が載っていないのでどなたかお助け下さい。

483 :132人目の素数さん:2005/04/18(月) 19:25:36
bとcが見あたらんが。

484 :482:2005/04/18(月) 19:42:53
あ・・・。

a,b,cを定めて解く。 ×
a    を定めて解く。 ○

でした。

485 :132人目の素数さん:2005/04/18(月) 20:53:08
>>482
普通に一文字ずつ消去していけば。

486 :132人目の素数さん:2005/04/18(月) 21:39:25
>>482
xとyを消去すると、 a = 2 or -11/7
a=2の時、 x=1,y=-3
a=-11/7の時、 x=-7/3, y=-14/3

487 :132人目の素数さん:2005/04/18(月) 23:32:12
ハミルトンケーリーって、3次の正方行列には適用できないんですか?

488 :132人目の素数さん:2005/04/19(火) 00:06:50
>>487
3次には3次の最小多項式がある。
2次の時と式が異なるので、そのまま入れてはいけない。

489 :132人目の素数さん:2005/04/19(火) 00:18:53
不等式2x^+5>6xを証明せよ。

どなたか判る方いらっしゃいませんか?

490 :132人目の素数さん:2005/04/19(火) 00:23:24
>>489
移項して平方完成 2(x-3/2)^2+1/2

491 :132人目の素数さん:2005/04/19(火) 00:25:20
>>489

2(x^2)+5 > 6x
2(x^2)-6x+5 > 0
2{x-(3/2)}^2 +(1/2) > 0

492 :132人目の素数さん:2005/04/19(火) 00:25:47
すまった、リロードし忘れt

493 :132人目の素数さん:2005/04/19(火) 00:34:32
>>490>>491
教えてくださってありがとうございました!!

494 :132人目の素数さん:2005/04/19(火) 00:50:20
誰か>>400わかんない?

495 :132人目の素数さん:2005/04/19(火) 00:56:48
●a>bかつb>c⇒a>c
●a>b⇒a+c>b+c
●a>bかつc>0⇒ac>bc

上の3つの式を用いて
a<0かつb<0のとき ab>0 をどうやって証明したらいいでしょうか?

496 :132人目の素数さん:2005/04/19(火) 01:55:12
>>488
ケーリーは最小多項式でなくて
固有多項式の零点になっているというものだろう。

497 :132人目の素数さん:2005/04/19(火) 09:18:48
それらが一致するというのが、ハミルトンケーリー

498 :132人目の素数さん:2005/04/19(火) 10:41:12
>>495
和や積の定義はどうなってるの?

499 :132人目の素数さん:2005/04/19(火) 11:08:48
>>497
A=O のとき、明らかにその主張は間違っていると思う。A=O は例外にするとしても、
n,m をn>m>を満たす整数として、A,Bを それぞれ n,m 次正方行列としよう。
さらに、Aの mxm の首座小行列の部分が A と等しく、その他の A の成分は 0 とする。
A の固有多項式は、B の固有多項式とは一致しないとおもうが、どうか? (t^(n-m)だけ違う)


500 :132人目の素数さん:2005/04/19(火) 11:27:05
>>400
普通に (360C2)から、一直線上にあるものを除くので Pを通り3点以上ならぶ直線を数え上げる

501 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/19(火) 12:04:29
Re:>497 お前何考えてんだよ?((1,0),(0,1))^Tの最小多項式とハミルトンケーリーの定理を比べてみろよ。

502 :132人目の素数さん:2005/04/19(火) 13:17:47
>>495
x<y⇔y>xも使っていいんだよね?
和や積に関しては通常の環であるとすれば
b<0より0<-b (規則2)
a<0かつ0<-bより-ab<0 (規則3)
従って0<ab (規則2)


503 :132人目の素数さん:2005/04/19(火) 13:51:49
>>500
結構面倒そうだ

504 :132人目の素数さん:2005/04/19(火) 17:27:44
傾きに注目すればなんとかなる

505 :132人目の素数さん:2005/04/21(木) 22:51:16
質問です。

A,Bを2つの集合とするとき、
 A-(A-B) = B ⇒ A ⊃ B
を示せ。

よろしくお願いします

506 :132人目の素数さん:2005/04/21(木) 22:58:00
X−Y⊂X。


507 :132人目の素数さん:2005/04/22(金) 00:11:48
x:y:z=2:-3:4のとき、(x^2+y^2+z^2)/(xy+yz+zx)の値を求めよ。ただしxyzノットイコール0とする。

よろしくお願いします。

508 :132人目の素数さん:2005/04/22(金) 00:14:21
>>507
比例式は=k(≠0)とおくのが基本
x/2=y/(-3)=z/4=k

509 :132人目の素数さん:2005/04/22(金) 00:16:48
x=2kとすると、y=-3k,z=4k.
x^2+y^2+z^2=(4+9+16)k^2=29k^2.
xy+yz+zx=(2*(-3)+(-3)*4+4*2)k^2=-10k^2.
∴(x^2+y^2+z^2)/(xy+yz+zx)=-2.9

510 :132人目の素数さん:2005/04/22(金) 00:20:37
まちがえた。。。。

511 :132人目の素数さん:2005/04/22(金) 00:24:50
√34 + √51
はどかな?



512 :sasa:2005/04/22(金) 00:27:09
すいません。フーリエ変換の問題でわからないところがあるのですが、
どこの板で質問したらよいかわかりません。どなたか教えていただけませんか?

513 :132人目の素数さん:2005/04/22(金) 00:38:24
方程式 2log(x−a)−(a/x)=0
があいことなる実数解をもつような実数aの範囲をもとめよ。よろしくお願いします。

514 :132人目の素数さん:2005/04/22(金) 00:46:19
>>513
氏ね。糞マルチ。

515 :132人目の素数さん:2005/04/22(金) 00:47:27
>>512
どんな問題か書かないことには何とも言えない。


516 :132人目の素数さん:2005/04/22(金) 00:58:08
>>513
解決済み。

◆ わからない問題はここに書いてね 162 ◆
http://science3.2ch.net/test/read.cgi/math/1113314531/616


517 :sasa:2005/04/22(金) 01:50:23
>>515
1、フーリエ変換した後の周波数成分は複素数で表されるが、
実数部、虚数部はそれぞれ何を意味しているか?
2、単一周波数の正弦波をフーリエ変換したとき、
周波数スペクトルが広い範囲で存在するのは何故か?
です。よろしくお願いします。



518 :132人目の素数さん:2005/04/22(金) 02:22:11
>>517
単一周波数の正弦波をフーリエ変換したとき、
周波数スペクトルは広い範囲では存在しないと思うのですが
どうでしょう?


519 :132人目の素数さん:2005/04/22(金) 06:43:06
こ−やって
  / 
 ('Д`)」
 ( ノ
 < |

こーう
ー( 'A`)―
  (┐)
  ノ


520 :132人目の素数さん:2005/04/22(金) 06:49:04
>>497
アホだな

521 :132人目の素数さん:2005/04/22(金) 06:58:09
お願いします

n∈N のときに
15|2^(4n) - 1が成り立つことを証明せよ

522 :132人目の素数さん:2005/04/22(金) 06:59:25
ある会社の入社式で新入社員を4人掛けで長椅子に座らせました。
そうしたらちょうど長椅子が7脚余りました。
今度は5人掛けで座らせたらいくつか長椅子が余りました。
今度は4人掛けと5人掛けで座らせたらぴったり収まりました。
さて新入社員は何人いるでしょう?

どなたか教えてください。

523 :132人目の素数さん:2005/04/22(金) 07:24:50
>>521
帰納法
2^{4(n+1)}-1=15*2^(4n)+2^(4n)-1

>>522
4人ずつ座らせても椅子が余るんだから
4人と5人でぴったりになるの?

524 :522:2005/04/22(金) 07:32:23
間違いでした。訂正します。

ある会社の入社式で新入社員を4人掛けで長椅子に座らせました。
そうしたら長椅子が7脚足りませんでした。
今度は5人掛けで座らせたらいくつか長椅子が余りました。
今度は4人掛けと5人掛けで座らせたらぴったり収まりました。
さて新入社員は何人いるでしょう?

525 :521:2005/04/22(金) 07:36:18
>>523
あぁめちゃくちゃ感謝します・・・

あ、でも
15|2^(4n)-1 → 2^(4n-1) = 15r, r∈N と習ったのですが
帰納法のn=k(とk+1)にしたときに、rはどうなってしまうのでしょうか・・・

理解力なくて申し訳ないです。教えてください。

526 :132人目の素数さん:2005/04/22(金) 08:04:07
>>525
15の倍数というのを表すために使ってるだけだから
15*(自然数)の形になってればいい
kのとき 2^(4k)-1=15r (r∈N)とおくと
k+1のときha>>523から
2^{4(k+1)}-1=15{2^(4k)+r}

527 :132人目の素数さん:2005/04/22(金) 08:33:32
結合ガウス分布ってなんですか?


528 :521:2005/04/22(金) 08:45:27
>>526
ありがとうございました!かなり助かりました!

529 :流星バナナ:2005/04/22(金) 09:32:07
点(x0,y0),(x1,y1)を結ぶ線分と、
点(x2,y2),(x3,y3)を結ぶ線分の
交点座標の求め方を教えてもらえないでしょうか?

自分では、連立方程式でガリガリ求める方法しか思いつきませんでした。
なにかもっとスマートな方法はないものでしょうか?

また交点を求めた後、両方の線分上に交点があるか、延長線上にあるかの
判定を行いたいと思います。
よろしくお願いします。
※間違えて162の方にも同じ質問を書き込んでいます。

530 :132人目の素数さん:2005/04/22(金) 09:36:51
>>517(1)
運動量の位相変化?

531 :132人目の素数さん:2005/04/22(金) 12:11:27
>>529
(x0,y0) の位置ベクトルを a
(x1,y1) の位置ベクトルを b
(x2,y2) の位置ベクトルを c
(x3,y3) の位置ベクトルを d
として、
sa+(1-s)b = s(a-b)+b
tc+(1-t)d = t(c-d) +d
がそれぞれの直線上の点の位置ベクトルを表すので
s(a-b)+b = t(c-d) +d
s(a-b) +t(d-c) = d-b
Ax = d-b
Aは(a-b d-c)という行列
x は (s t) を転置した縦ベクトル
x = A^(-1) (d-b)

0≦s≦1
0≦t≦1
ならば両方の線分上にある。


532 :132人目の素数さん:2005/04/22(金) 13:06:11
有理数の加法と乗法に関して、分配法則が成立することをしめすにはどうやればいいですか?

533 :流星バナナ:2005/04/22(金) 13:48:24
>>531
すみませんベクトルはあまり分かりません。
xが交点座標の位置ベクトルでよろしいのでしょうか?
最終的に位置ベクトルを交点座標に変換するにはどのように
すればいいのでしょうか?
よろしくお願いします。


534 :132人目の素数さん:2005/04/22(金) 16:50:19
>>532
整数の加法と乗法に関しての分配法則などを用いてやればよい。

>>533
スマートな方法がわからない原因が自分の勉強不足であると判明しているのだから、
ベクトルについて十分に学んでから>>531を読み返せばよいだけの話だろう。

535 :132人目の素数さん:2005/04/22(金) 21:29:45


                    ,. ―― 、
                  /,,- ''´ ~ `ヽヽ
                 / / ,,-''´~`ヽ、 ヽヽ
             __!_´`y'"_゙_、     ゙i  ゙i.i
          _, -//./イ| | |、|ヽヽミ`、- 、゙!、 .!.!
        , '´-///彡´ // V´\ ミミ゙ヽ、ヽ
       /,.,'-'/У´彡'´/ /, '´ `ヽ、、゙ ミ- i゙i、゙i゙i
      ////|У////|/ /    ゙i ゙!゙i゙iヽ、゙i i゙i ゙i
     ./////.// //// .ii"/      i |. ゙i゙ii .゙i゙i ゙i ゙i
     | |i/ /.//::::i"/  i./|      |゙i | |.゙i .゙i|゙i.|、i   
     .| |i"/| |/___//  i.| |       .| |.| | |i | .|.|.゙i  バカな人はこないでくれる?
     | ゙i"| | ||::::/|`゙''‐-|!-|ィ ノ l''‐--ノ-|.!-| |゙i i| |.|、.i  
     .i |.|| | | | i ,!,=ニ=`!、       ,.=ノニミ|、| .|i.|.|.| i.i  
     ヽ|||.|_i i〃/0⌒ヽ     '.'/0⌒ヾミ |i./|i i.i
      ゙i'´|| 〃{::,',',',::}      {::,',',',::} ゙/⌒、|.ノ
      {( | !!ヽゝ、::::ノ_      ゝ、::::ノィノ⌒ .゙i
     ノ |゙ヾニ|!  ~"~゙~    '    ~"~゙゙ |_ノノ!、     
  ` ̄´ .ノ | |λヽ、///   __   /// /- '"|.| `--
      / .イ.||゙i| | |゙i 、,, ´      ,, .,''"/ / |.|、ヽ、
     ////゙i ゙i ゙、゙i|.| | !_゙i'' ‐-‐ ''i"、!、|/ /  .| |.i、 ヽ、_
 `ヽ__ノ´ノ/|i ゙、 ゙i ゙、゙i i i \   /,'⌒--、 ノノ|.} i
  _,/ | | >'∧゙.i、 、゙i ゙i .\  ,'´     `=ミ, i
      | |.>イ .λ_|゙i 、゙i i、、 ヽi ・iァ     -〈
      i゙i L{ ノ | .| ゙i .il  i \,!. .-!、  ・   イ〉
       `ヽ.i   ̄.i .i《-''"》 _〉、,,     ノ /
         .'i    i,// ̄ ̄ノ´  ,,´|' ' ´ ./i
         .i    .i'",,-,,'' ''   ,,.!-''´  ,, ' i
          i    .i( (  ,,..-''´  ,,..-''i´   i

536 : ◆27Tn7FHaVY :2005/04/22(金) 21:33:25
幼女が何を言うかっ!

537 :132人目の素数さん:2005/04/22(金) 21:38:06


                    ,. ―― 、
                  /,,- ''´ ~ `ヽヽ
                 / / ,,-''´~`ヽ、 ヽヽ
             __!_´`y'"_゙_、     ゙i  ゙i.i
          _, -//./イ| | |、|ヽヽミ`、- 、゙!、 .!.!
        , '´-///彡´ // V´\ ミミ゙ヽ、ヽ
       /,.,'-'/У´彡'´/ /, '´ `ヽ、、゙ ミ- i゙i、゙i゙i
      ////|У////|/ /    ゙i ゙!゙i゙iヽ、゙i i゙i ゙i
     ./////.// //// .ii"/      i |. ゙i゙ii .゙i゙i ゙i ゙i
     | |i/ /.//::::i"/  i./|      |゙i | |.゙i .゙i|゙i.|、i   
     .| |i"/| |/___//  i.| |       .| |.| | |i | .|.|.゙i  間違って大学院に入って今わたし大変なのよ。
     | ゙i"| | ||::::/|`゙''‐-|!-|ィ ノ l''‐--ノ-|.!-| |゙i i| |.|、.i  
     .i |.|| | | | i ,!,=ニ=`!、       ,.=ノニミ|、| .|i.|.|.| i.i  
     ヽ|||.|_i i〃/0⌒ヽ     '.'/0⌒ヾミ |i./|i i.i
      ゙i'´|| 〃{::,',',',::}      {::,',',',::} ゙/⌒、|.ノ
      {( | !!ヽゝ、::::ノ_      ゝ、::::ノィノ⌒ .゙i
     ノ |゙ヾニ|!  ~"~゙~    '    ~"~゙゙ |_ノノ!、     
  ` ̄´ .ノ | |λヽ、///   __   /// /- '"|.| `--
      / .イ.||゙i| | |゙i 、,, ´      ,, .,''"/ / |.|、ヽ、
     ////゙i ゙i ゙、゙i|.| | !_゙i'' ‐-‐ ''i"、!、|/ /  .| |.i、 ヽ、_
 `ヽ__ノ´ノ/|i ゙、 ゙i ゙、゙i i i \   /,'⌒--、 ノノ|.} i
  _,/ | | >'∧゙.i、 、゙i ゙i .\  ,'´     `=ミ, i
      | |.>イ .λ_|゙i 、゙i i、、 ヽi ・iァ     -〈
      i゙i L{ ノ | .| ゙i .il  i \,!. .-!、  ・   イ〉
       `ヽ.i   ̄.i .i《-''"》 _〉、,,     ノ /
         .'i    i,// ̄ ̄ノ´  ,,´|' ' ´ ./i
         .i    .i'",,-,,'' ''   ,,.!-''´  ,, ' i
          i    .i( (  ,,..-''´  ,,..-''i´   i

538 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/22(金) 21:40:57
Re:>537 飛び級?

539 :asf:2005/04/22(金) 21:52:37
safaf

540 :132人目の素数さん:2005/04/23(土) 01:27:23
>>537
セクハラでか?

541 :132人目の素数さん:2005/04/23(土) 01:44:56
h

542 :132人目の素数さん:2005/04/23(土) 09:37:49
>>495
@ a>bかつb>c⇒a>c
A a>b⇒a+c>b+c
B a>bかつc> 0⇒ac>bc
とします。

a<0かつb<0とする。

 b<0 の両辺に -b を加えるとAより
 b+(-b)<0+(-b)
 0<-b
よって a<0 の両辺に -b を掛けるとBより
 a*(-b)<0*(-b)
 -ab<0
この両辺に ab を加えるとAより
 -ab+ab<0+ab
 0<ab
         (証明終了)



543 :bunnkei:2005/04/23(土) 22:34:27
次の連立1次方程式が解を持つようにaを求めよという問題。
 x −     2y =  7
3x + (a+2)y = −9
ax +      y = −1

>>482
xとyを消去すると、 a = 2 or -11/7
a=2の時、 x=1,y=-3
a=-11/7の時、 x=-7/3, y=-14/3
↑【xとyを消去すると】が分かりません…。
すいませんがどなたか詳細キボンヌであります… orz

544 :132人目の素数さん:2005/04/23(土) 23:23:11
3線が1つの交点を持つとき

545 :132人目の素数さん:2005/04/23(土) 23:51:17
4次方程式
x^4-2x^3+11/2x^2-8x+4=0
を解く公式を教えて下さい。

546 :べーた LVβ5:2005/04/23(土) 23:52:13
てか、ココで質問してる人は、オレに解かせようとしている人達が質問者偽ってるのですか?w

547 :べーた LVβ5:2005/04/23(土) 23:53:16
>>543
xに代入するか式を倍するかして引いたら消える。

548 :べーた LVβ5:2005/04/23(土) 23:54:26
>>545
分母因数分解できん?

549 :べーた LVβ5:2005/04/23(土) 23:55:18
うわっ!スレ間違えてた!!w

550 :こっち:2005/04/23(土) 23:56:50
簡単で恥ずかしいんですが↓問題です
乗法公式を利用し、次の計算を答えなさい

(1)77×83

勝手ですが過程も詳しく書いていただけるとありがたいです。
答えならわかるんでw


551 :132人目の素数さん:2005/04/23(土) 23:58:49
>>550
いろんな公式あるけどな.
とりあえず77と83の真ん中が80だから77×83=(80-3)×(80+3)=・・・

552 :簡単:2005/04/24(日) 00:08:39
(80−3)(80+3)=(80×80)−(3×3)
       =6400−9
       =6391

553 :132人目の素数さん:2005/04/24(日) 00:13:12
xy^2-x-y+1
この式の因数分解のやり方を教えてください。
お願いします。


554 :132人目の素数さん:2005/04/24(日) 00:16:34
xy^2 -x-y+1
=x(y^2 -1)-(y-1)
=x(y+1)(y-1)-(y-1)
=(y-1){x(y+1)-1}

555 :bunnkei:2005/04/24(日) 00:16:40
>>547 xに代入するか式を倍するかして引いたら消える。

あうぅ…。基本変形したいんでつがどの式をどの式に代入or倍するかが分かりませんです…。
文系脳がショートして煙が出てきた…。 orz

>>544 3線が1つの交点を持つとき

分かりそうで分かりませんです…はぃ…。 orz

556 :553:2005/04/24(日) 00:20:37
ありがとうございました。

557 :132人目の素数さん:2005/04/24(日) 00:37:00
>>543
上から順に(1)、(2)、(3)とすると、
2*(3)+(1) (2a+1)x=5
(2)−3*(1) (a+8)y=-30
a≠-1/2,-8 として
x=5/(2a+1) , y=-30/(a+8) を(1)に代入する。

558 :bunnkei:2005/04/24(日) 06:24:39
>>557
。・゚・(ノД`)・゚・。 多謝!!
(゚Д゚)つI お礼にドゾ〜♪





というのは冗談で…本当にありがとうございました。


559 :132人目の素数さん:2005/04/24(日) 19:15:02
∫(√(1+x))/x dx
ってどう置換したらよい?



560 :132人目の素数さん:2005/04/24(日) 19:20:19
1+x=t^2かな

561 :132人目の素数さん:2005/04/24(日) 19:23:28
>>560
さんきゅー



562 :561:2005/04/24(日) 19:49:10
>>560
ごめん。そう置換してからどうするの?

563 :132人目の素数さん:2005/04/24(日) 19:53:25
{t/(t^2-1)}*(2t)=2+2/(t^2-1)
かなーり適当

564 :132人目の素数さん:2005/04/24(日) 19:53:48
>>562
分子を分母で割る。

部分分数分解。

565 :561:2005/04/24(日) 19:54:13
そうかそうか、それから分母をわけたらよいのか。
ありがと。

566 :132人目の素数さん:2005/04/25(月) 14:55:38
n→∞で、lim(n/3^n)の極限値ってどうやって求められますか。

567 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/25(月) 15:01:43
Re:>566 n/3^n<(2/3)^n.

568 :566:2005/04/25(月) 15:10:13
>>567
ありがとうございます。

569 :132人目の素数さん:2005/04/25(月) 15:24:34
洋書の微分方程式に”operators”てあるんだけど、どういう意味
ですかね?

570 :132人目の素数さん:2005/04/25(月) 15:27:57
x+y^2=0で 点(0,-3)に最も近い点は?
どのように求めたらいいのかわからないので
解る方よろしくお願いします。

571 :132人目の素数さん:2005/04/25(月) 15:42:40
問題

急行列車は伊丹駅を1分30秒遅れで出発しました。
その列車は途中の通過駅である塚口駅を1分遅れで通過しました。
(30秒、遅れを取り戻しました)
伊丹駅と塚口駅の距離は3kmです。
急行列車の標準最高速度が90km/時だった場合、
この急行列車は何km/時で、走っていたでしょうか。


572 :132人目の素数さん:2005/04/25(月) 15:43:07
>>569
微分演算子 differential operator

573 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/25(月) 15:44:14
Re:>569 演算(というか写像なんだけどね。ちなみに写像はmapなので注意。)。
Re:>570 (0,-3)中心の円がx+y^2=0と一点のみで共有する条件を求めよう。

574 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/25(月) 15:45:44
Re:>571 7行目を分かりやすく説明してくれ。

575 :132人目の素数さん:2005/04/25(月) 15:48:04
90キロの場合、3kmは2分で通過します。
それを1分30秒で走ったことになります。

3kmを1分30秒で走った場合のスピードは120キロ。

しかしこれは、走り出す時の低速を考慮していないので、
実際の最高速度はそれ以上だったと思われる。
脱線の限界点とされる133キロはゆうに超えていた可能性は充分にある。

576 :132人目の素数さん:2005/04/25(月) 15:53:02
地図を見てみたけど、3.5kmくらいあるね。

577 :132人目の素数さん:2005/04/25(月) 16:51:47
>>575
>走り出す時の低速を考慮していないので
は、

>90キロの場合、3kmは2分で通過します。
>それを1分30秒で走ったことになります。
にもあてはまる。

578 :132人目の素数さん:2005/04/25(月) 17:51:02
>>571
全体的に均一に速度が x 倍された場合、
同時間に進む距離は x 倍される。
今回そのような条件で加速されたと「仮定」すると、
通常運行通りに進めば 3 km 進むところが、
3x km 進むことになる。

仮に塚口駅を通過した際に既に最高速度に達しており、
その速度がずっと維持されていたと「仮定」すると、
超過した 3(x-1) km を進むのにかかる時間は
3(x-1)/90x 時間 = 120(x-1)/x 秒となる。
これが 30 秒なわけなので、x = 4/3 となる。

即ち、これらの2つの「仮定」が正しければ、
90 km/h * 4/3 = 120 km/h だったとなる。

579 :d ◆33XVmS0VO2 :2005/04/25(月) 18:49:50
A1、A2、・・・、Ak を正規行列とします。

上の行列があるユニタリ行列Uで、同時対角化できた。

Vi を A1、A2、・・・、Akの共通の固有空間とするとき、

C^n = V1 + ・・・ + Vk ( + は直和)分解できることを示してください。

580 :132人目の素数さん:2005/04/25(月) 18:50:28
示せば?

581 :132人目の素数さん:2005/04/25(月) 21:40:45
示そう。

582 :132人目の素数さん:2005/04/25(月) 21:49:11
示した。(詳細略)

583 :132人目の素数さん:2005/04/25(月) 21:55:24
>>579
言ってることがよく分からん。
Viのiというのは何で決められているんだ?

584 :d ◆33XVmS0VO2 :2005/04/25(月) 22:25:52
>>583

わかりにくかったので、もう一度。

A1、A2、・・・、Ak を正規行列とします。

上の行列があるユニタリ行列Uで、同時対角化できたとする。

C^n = V1 + ・・・ + Vk (+は直和) を示してください。

*Vi は A1、A2、・・・、Ak の極大な共通な固有空間

*Aj X = λj(i) X (λj(i) は Aj の固有値 、 X ∈ Vi) 

585 :570:2005/04/26(火) 04:04:32
>>573
それも良くわかりませんので詳しくわかりやすく教えていただけますか?

586 :132人目の素数さん:2005/04/26(火) 04:41:35
>>570
曲線x+y^2=0上の点を一変数で表して
点(0,-3)との距離を立式すれば
最小値求めるのはナントカなるだろ。

587 :570:2005/04/26(火) 10:33:18
>>586
x=-y^2として
d^2=(-y^2-x1)^2+(y-y2)^2 (0,-3)代入で
d^2=(-y^2-0)^2+(y-(-3))^2
d^2=y^4+y^2+6y+9
で距離を求めるのはあっていますか?


588 :ロンリネンス:2005/04/26(火) 12:03:01
xを未知数とする方程式4cosx-6sin^2x=aが解をもつとき、定数aを求めよ。

cosを二乗してマイナス1を引く形式にする・・?
なんかよくわかりません、教えて下さいお姉さん。

589 :132人目の素数さん:2005/04/26(火) 12:04:40
>>587
それでいいよ。
あとは、微分して増減表でも書けば。

590 :132人目の素数さん:2005/04/26(火) 12:06:53
>>588
t = cosx
とおくと
-1≦t≦1
sin^2 x = 1-t^2
4t -6(1-t^2) = 6(t^2)+4t-6

6(t^2)+4t-6 が -1≦t≦1で取る値の範囲を求める。

591 :132人目の素数さん:2005/04/26(火) 12:09:35
>>584
条件足りないような
kとnの関係はどうなるんだろう?

592 :ロンリネンス:2005/04/26(火) 12:10:02
t = cosx
とおくと
-1≦t≦1

すいません、この段階でわかりません。。

593 :132人目の素数さん:2005/04/26(火) 12:11:23
>>592
教科書でcosxの定義の書いてある部分を読むこと。


594 :132人目の素数さん:2005/04/27(水) 10:43:23
>545
平方完成の公式: ax^2 +bx+c = a(x +b/2a)^2 -D/4a, D≡b^2-4ac.
高次の側から実行すると、
左辺 = (x^4 -2x^3+x^2) + (9/2)x^2 -8x +4 = x^2(x-1)^2 + (9/2)(x -8/9)^2 +4/9 > 4/9.

極小値 0.453002558909536… よりは小さい。

595 :132人目の素数さん:2005/04/27(水) 15:07:02
物を造る時の最初のステップが「計画」であってこの計画というステップを十分に踏まず作業を始めてしまうと大変なことになってしまい、
結果的に時間、労力、経済的にもかなりの無駄がでてしまう。
 土木工事の特徴は公共性が高い(=誰でも様々な目的にしようすることが多い)ことであり、
それらの要求とする性質を全て満たすことは不可能に近いがなるべく多くの項目の要求を満たすように
しなければならない。さらに土木施設物の造設は地域社会に大きな影響をもたらすので
「計画」段階でその工事の地域社会に対する社会的、経済的効果を把握しておくことが非常に重要だ。
 土木工事の対象とされているものはほとんど社会基盤施設(インフラ)の中に含まれている。
インフラとは大きく分類して生産活動に関連する公共施設→生産基盤施設、地域住民の生活の維持・
向上のための生活基盤施設、自然環境の保全、災害防止をはかる国土保全施設にわけられる。
これらの具体的な例を挙げると生産基盤施設は林道、漁港、エネルギー供給施設、道路等で生活基盤施設は住宅、上下水道、文化・体育施設、
病院等で国土保全施設は治山、治水、海岸保全である。
 これらの事柄からみても土木事業は、経済的には地域の社会資本を形成する行為であり、社会的には社会基盤施設を造設する好意である、
ということをはっきりということができ、公共性という性格が与えられ、
多くの場合独占的であり、政治とも強く関連してくるということもわかる。


596 :132人目の素数さん:2005/04/27(水) 15:07:41
自分でかいていみわからんくなったのでやったでけですごめんなさい

597 :132人目の素数さん:2005/04/27(水) 20:51:30
>545
蛇足だが、極小位置は
 x=1/2 + (u +7/16)^(1/3) - (u -7/16)^(1/3) = 0.90442597025945…
 u = {(7/16)^2 +(2/3)^3}^(1/3) 〜 0.698357
 y = 0.453002558909536…

598 :597:2005/04/27(水) 20:54:48
>545
(訂正)スマソ.
 u = √{(7/16)^2 +(2/3)^3} 〜 0.698357

599 :132人目の素数さん:2005/04/27(水) 21:45:55
a^2(b+c)+b^2(c+a)+C^2(a+b)+3abc
この式の因数分解のやり方をお願いします。

600 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/27(水) 21:49:34
Re:>599 既約(a,b,c,の式の中にCが紛れているから。)。何はなくとも、初めに一次の項を探そう。(a+b+c)とか。

601 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/27(水) 21:50:18
誤:項
正:因数

602 :132人目の素数さん:2005/04/27(水) 22:58:12
a^2(b+c)+b^2(c+a)+C^2(a+b)+3abc
→訂正 a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc でした。

自分なりに考えましたがどうも分かりません。
次にするべきことでも教えていただけると幸いです。



603 :132人目の素数さん:2005/04/27(水) 23:04:53
1/sinθ+1/cosθ=5/12 (0≦θ≦180)の時の次の値を求めよ。

1、sinθcosθ
2、sinθ+cosθ

sinθとcosθが分母にあって意味がわかりません。二乗してその後が分かりません。
お願いします。

604 :132人目の素数さん:2005/04/27(水) 23:08:53
お願いします。
Σ[1.∞]n/(n+1)!

605 :BlackLightOfStar ◆pf39GiDXIQ :2005/04/27(水) 23:09:00
Re:>602 何はなくとも、初めに一次の項を探そう。(a+b+c)とか。


606 :132人目の素数さん:2005/04/27(水) 23:09:29
まず、通分しましょう
sinθ+cosθ=t
sinθ+cosθ=sとおきます。
s^2-1=2tとなりますよね。
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  がんばりましょうね
  iハ l  (.´ヽ     _   ./    ,' ,' '  | わたしもがんばります・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


607 :132人目の素数さん:2005/04/27(水) 23:09:53
こんばんは。わからない問題が2問あったので教えてください!
高1なのでI+Aだと思います。入学してすぐなのにもうついていけなくなってしまっています(涙)

@実数を係数とするxの3次方程式x^3-√3x^2+3x+a=0
の異なる3つの解の実部がすべて等しいときのaの値を求めよ。


Ax^2+6y^2=360を満たす正の整数x,yの値を求めよ。


608 :132人目の素数さん:2005/04/27(水) 23:17:01
>>607
解と係数の関係を使います
異なる3つの解の実部がすべて等しいとありますから
解は実数a、α+iβ,α-iβです。
ただし、α^2+β^2=a^2です。
次はx^2+6y^2=360を満たす正の整数x,y
とありますから、xは6の倍数です。
最大でxは18です
yは最大で9です。
この条件を使って解きます。

           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  結構難しいですね
  iハ l  (.´ヽ     _   ./    ,' ,' '  | がんばってください・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


609 :132人目の素数さん:2005/04/27(水) 23:21:35
>>604
n/(n+1)! = 1/n! - 1/(n+1)!

610 :132人目の素数さん:2005/04/27(水) 23:26:48
>>602
http://science3.2ch.net/test/read.cgi/math/1113314531/871-872

611 :132人目の素数さん:2005/04/27(水) 23:26:58
xの整式をf(x)を(x-1)で割れば6余り、(x-2)(x-2)で割れば(6x-1)余る
f(x)を(x-1)(x-2)(x-2)で割った余りを求めよ。
微分を使った解法を教えてください。




612 :132人目の素数さん:2005/04/27(水) 23:30:16
>>611
マルチ氏ね。

613 :611:2005/04/27(水) 23:31:26
>>612
お前が死ね

614 :132人目の素数さん:2005/04/27(水) 23:33:30
>>613
二度と来るなヴォケ!!

615 :611:2005/04/27(水) 23:39:37
>>614
うるせー、早く教えろや!

616 :132人目の素数さん:2005/04/28(木) 00:00:43
相加相乗の公式忘れた… 誰か…

617 :132人目の素数さん:2005/04/28(木) 00:11:07
a[1],a[2],a[3]....a[n]、全n個の数がすべて0以上の値をとるとき、
a[1]+a[2]+a[3]+....+a[n] ≧ n{a[1]*a[2]*a[3]*....*a[n]}^(1/n)
等号が成り立つのはa[1]=a[2]=a[3]=....=a[n]のとき。

618 :132人目の素数さん:2005/04/28(木) 00:29:41
次の条件を満たす実数kの範囲
y=‐x^2+kx‐(k‐1)がつねに直線y=‐2x+3 の下方にある。

他のスレでも頼みましたが、ちょっとスレ違いかな…と思ったので。マルチで悪いですが、お願いしますm(_ _)m

619 :132人目の素数さん:2005/04/28(木) 00:30:01
>>611
まるちか、どぉせ寝てんだろうが、とりあえず余りの2次式をax^2+bx+cと表す。
f(x)=(x-1)*A(x)+6 ‥(1)、 f(x)=(x-2)^2*B(x)+6x-1 ‥(2)、
f(x)=(x-1)(x-2)^2*C(x)+(ax^2+bx+c) ‥(3)、
(1)(3)より、(x-1)*C(x)+6 = f(x) = (x-1)(x-2)^2*C(x)+(ax^2+bx+c)、
x=1を代入すると、6=a+b+c ‥(4)、
(2)(3)より、(x-2)^2*B(x)+6x-1 = f(x) = (x-1)(x-2)^2*C(x)+(ax^2+bx+c) ‥(5)、
x=2を代入すると、11=4a+2b+c ‥(6)、
(5)の両辺をxについて微分すると、
2(x-2)*B(x)+(x-2)^2*B'(x)+6 = (x-2)^2*C(x)+2(x-1)(x-2)*C(x)+(x-1)(x-2)^2*C'(x)+(2ax+b)
x=2を代入すると、6=4a+b ‥(7)、 (4)(6)(7)より、a=1,b=2,c=3 よって x^2+2x+3


620 :132人目の素数さん:2005/04/28(木) 00:35:32
線形代数の問題だけど誰かこれ答えてください。お願いします。
どこかで俺計算ミスしてるのか何度やっても解けない・・・。
次の行列式の逆行列を行基本変形・掃き出し法により求めよ。
 3  2 3
 8 −3 3
−2  2 4

621 :132人目の素数さん:2005/04/28(木) 00:37:21
>>618
y=‐x^2+kx‐(k‐1)をy=‐2x+3 に代入して重解となるkの値を出す
その値をaとするとこたえは
k>a
です

622 :132人目の素数さん:2005/04/28(木) 00:44:28
放物線は下に開いた形状をしているので、直線y=-2x+3と交点を持たない場合を考え
ればよいから、-x^2+kx-(k-1)=-2x+3 ⇔ x^2-(k+2)x+k+2=0 より、
判別式=(k+2)^2-4(k+2)<0 ⇔ (k+2)(k-2)<0、-2<k<2


623 :132人目の素数さん:2005/04/28(木) 06:18:06
>>620
何度やってもって、どうせ1回目と同じ手順を繰り返してるんだろ?
違う手順も試してみような。

624 :132人目の素数さん:2005/04/28(木) 09:12:10
>>621-622

625 :132人目の素数さん:2005/04/28(木) 09:13:00
>>621-622
ありがとうございましたm(_ _)m

626 :132人目の素数さん:2005/04/28(木) 09:47:28
>>620
線形代数スレッドで言われた事がよく分からなかったからって、
何事もなかったようにここで聞くのか?良い根性だな。

まあ、一言いうとすれば、あれだ。
君は、もしかして、今どきはやりの、分数の計算ができない大学生かな?

627 :132人目の素数さん:2005/04/28(木) 10:16:52
>>620
9/50 1/50 -3/20
19/50 -9/50 -3/20
-1/10 1/10 1/4

628 :132人目の素数さん:2005/04/28(木) 11:32:09
Σ[1.∞](3/5)^n+1/n(n+1)
答えだけお願いします。

629 :132人目の素数さん:2005/04/28(木) 11:37:56
629

630 :132人目の素数さん:2005/04/28(木) 11:44:47
>628
Σ_[n=1,∞) {[(3/5)^n] + 1/[n(n+1)]}
= Σ_[n=1,∞) {[(3/5)^n] + 1/n -1/(n+1) }
= (3/5)/[1-(3/5)] +1
= 3/2 +1 =5/2.

631 :132人目の素数さん:2005/04/28(木) 11:47:20
d

632 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/28(木) 14:40:59
Re:>605 お前誰だよ?

633 :132人目の素数さん:2005/04/28(木) 16:00:23
カオスの予測不可能性って解析的に分からないといってるだけ?
それとも予測不可能である事が証明されてるの?

634 :132人目の素数さん:2005/04/28(木) 16:47:32
僅かな違いが大きく拡大してしまうというのがカオスの予測不能性。
そう言う意味で証明されている。
カオスでない現象は誤差を含む計算でも、それなりの近似的な答が出るけれど、
カオスな現象は無限桁の精度で計算しないと、近似計算すらできない。

635 :132人目の素数さん:2005/04/28(木) 17:29:28
それってnの増大でδが発散するというだけでは?
現在は解法が知られていないというだけで、一般に予測不可能であることは証明できないですね。

636 :132人目の素数さん:2005/04/28(木) 17:58:34
発散とはまた全然違う話。むしろ振動の方が近いかな。
例えばsin(2^100)がいくつになるか、普通の関数電卓やExcelなどで計算しても無意味。
有効数字以下の数字で全然答が変わってくるから。
ちゃんと計算しようと思ったら非常に高い精度の計算が必要。
また、100だと思ってた数値が実は100.01だったりしたらまた答が全然変わってくる。
カオスの予測不可能性というのはこういう感じだと思ってもらう方が近いかと。

637 :132人目の素数さん:2005/04/28(木) 19:09:17

           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< どうでもいいですよ
  iハ l  (.´ヽ     _   ./    ,' ,' '  | もう帰りますよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


638 :せんけい ◆L5hxS20gKU :2005/04/28(木) 21:37:27
A、Bを n次正方対称行列で、それぞれの行列の固有値がすべて

非負とします。このとき、

 | a(11)*B a(12)*B ・・・・ a(1n)*B  |
| a(21)*B  |
・                     
     ・                    
| a(n1)*B ・・・ a(nn)*B |  (a(ij)とはAの(i,j)成分)

上の n*n次行列の固有値がすべて非負である。

これを教えてください。  



639 :せんけい ◆L5hxS20gKU :2005/04/28(木) 21:43:09
>>638 の補足

 上の n*n次正方行列とは、

  AとBとの kronecker積のことです。

   




640 :132人目の素数さん:2005/04/28(木) 22:15:13
『R^2内の直線全体の為す集合はどのような幾何学的対象と同一視できるか』
↑を論理的に証明したいのですがよく分かりません。
どなたかご教授していただけないでしょうか?
もしくはこれに関する参考文献などあれば教えてください。
よろしくお願いします。

641 :132人目の素数さん:2005/04/28(木) 22:21:16
http://www.sod.co.jp/asx/300k/pic_putirashutu_r.asx

642 :132人目の素数さん:2005/04/28(木) 22:46:48
>>640
宿題の丸投げか?

643 :132人目の素数さん:2005/04/29(金) 00:28:10
>>640
ax+by+c=0 ⇔ a : b : c

a≠0の時 (b,c)という R^2の点に対応する
a = 0の時、b≠0で y = -c/b = dという Rの点に対応する。

したがって、R^2とRを合わせたもの

644 :132人目の素数さん:2005/04/29(金) 00:34:38
>>640
R^3上の平面

645 :132人目の素数さん:2005/04/29(金) 00:35:44
>>638
クロネッカー積って直積のことだろ。
自明だ。自明。
そのn*n次正方行列の固有値と固有ベクトルは、
A,Bのそれを使ってあらわにかける。
ちょっとでも調べてみろよ。その表式見たら、
質問したのが恥ずかしくなるぞ。

646 :132人目の素数さん:2005/04/29(金) 00:53:41
二次曲線:ax^2+2hxy+by^2+2fx+2gy+c=0に関して、定点P(x1,y2)の曲線を求めたいんです。解説つきで答えをお願いします

647 :132人目の素数さん:2005/04/29(金) 01:00:42
自分の書いたものをよく読んでから出直してこい

648 :132人目の素数さん:2005/04/29(金) 01:06:41
>>646
すいません。定点Pの極線でした

649 :132人目の素数さん:2005/04/29(金) 06:06:23
>>646
答えは、2次曲線 曲線でググれば出てくるでしょう
x^2→x1x、y^2→y2y、xy→(x1y+xy2)/2、x→(x+x1)/2、y→(y+y2)/2
と置き換えれば求まります
求めるのは、面倒だから...
標準形で求めて回転と平行移動で戻すのが楽かな
極線の定義通りに計算するのはなぁ...

650 :132人目の素数さん:2005/04/29(金) 13:31:10
>>649
ありがとうございます。でも携帯なのでググれません(TT-TT)

651 :132人目の素数さん:2005/04/29(金) 14:15:53
4x-1/3 の値の少数第1位を四捨五入すると3となるようにxの値の範囲を定めよ
という問題があって、答えは
17/8≦x<23/8 でした。
僕は 8.5/4≦x<11.5/4 になりました。
答えは同じだと思うのですが、こういう場合は小数がない方がよいのでしょうか?

652 :Mozilla in X11:2005/04/29(金) 14:20:01
悪くはないが、なるべく分母と分子が整数の既約分数に直しておいた
方が丁寧だろう。

653 :132人目の素数さん:2005/04/29(金) 14:24:01
>>652
そうだったんですか。どうもありがとうございました。

654 :べーた LVβ5 402 403 407 410:2005/04/29(金) 15:02:51
>>653
どういたしまして

655 :132人目の素数さん:2005/04/29(金) 16:12:13
Xを位相多様体,
Xが連結⇒Xは弧状連結

証明の概略だけでもいいので宜しくお願いします。

656 :132人目の素数さん:2005/04/29(金) 17:47:43
>>655
「Xは弧状連結⇒Xが連結」は正しいが「Xが連結⇒Xは弧状連結」は正しくないぞ
R^2上で
∪[n∈N]{(x,y)|x=1/n,0<y≦1}
{(x,y)|x=0,0<y≦1}
{(x,y)|0<x≦1,y=0}
の和集合は連結だが弧状連結ではない。

657 :132人目の素数さん:2005/04/29(金) 18:07:41
                          _ ......... __
                      ,.ィ"/,. ィ'":.:.:.:\:.:`丶、
                    / / ,:":.:.:.:.:.:.:.:.:.:.:.:ヽ:.:.:.:.:.\
                   / ./ /:.:./:.:.:.:.:.:.:.|:.:ト;.:.:l:.:.:.:.:.ヽヽ
  ┏┓  ┏━━┓         / /:.:./:.:.:.:.:.:.:.:/:.:| ',:.:ト、:.:.!:.:.l:.',        ┏┓┏┓┏┓
┏┛┗┓┃┏┓┃         .,' l::.:.:.:l:.:.:./:.:.://_/ .l:/ー-ヽ:.:|',|..        ┃┃┃┃┃┃
┗┓┏┛┃┗┛┃┏━━━━、.」  |.:.:.:.l:.:.l_:/フ ' /' 、,,,,,.ノ:./  ━━━━┓┃┃┃┃┃┃
┏┛┗┓┃┏┓┃┃        .:.{  !:.:.:.:.Vr   ,,ィ ′  ///イ}          ┃┃┃┃┃┃┃
┗┓┏┛┗┛┃┃┗━━━━.:{   ヘ:.:.:.:\=''"//   _   ハ: ━━━━━┛┗┛┗┛┗┛
  ┃┃      ┃┃        ..:.{   ,イ_ヽT rr‐',   <ノ , ' }           ┏┓┏┓┏┓
  ┗┛      ┗┛      .:.:..{ r-,.‐-.、>、ヽヽヽ ..__/  }          ┗┛┗┛┗┛
               /:.:.:.:.:.:.:.:{ </: : : : :ヽ} ヽ、  ,ヽ,‐;.:.::{   }        //
              /:.:.:.:.:.:.::.:.{ {l: : : : : :.:.!{,〃゙Yニ - _ュく{.   }       //
    _..rY、         , ':.:.:./:.:.:.:.,イ/:.:.|:.:.',: : /: : : \/ !  / /{:ハ.  }.   /,_ィ_〉 〉
.        , ':.:.:/:.:.:.:.:./ /:.:.:.:!:.:.:.∨: :_:_: : / l   ' .,'イ: : :!  }. ,イ    'ー- ._
       , ':.:./:.:.:.:.:.:./ ./:.:.:.:.:.!:.:.:/: :/r =7     ,'.フ: :ヽl   }Y フ '´ ̄`二- '-'
      ,.':.:/:.:.:.:.:.:.:/ /:.:.:.:/ハ:/:.:.:.イ7/〈:、     !'.):.:. : : `ヽ/'、ヽ二-フ´
      /:.:.:.:.:.:.:., '  /:.:./:./:./:.:.:.:/://:.:.:ヽ:\   |ヘ:r,.-.、、/  ゙ーァ'´
      :.:.:.:.:.:.:./  ./://:.\:.:.:.:/:.V:.:.:.:. : :〉:/  l:.\ニ/Yl   /


658 :132人目の素数さん:2005/04/29(金) 18:10:47
>>656
∪[n∈N]{(x,y)|x=1/n,0<y≦1}
{(x,y)|x=0,0<y≦1}
{(x,y)|0<x≦1,y=0}
の和集合って位相多様体になります?

659 :132人目の素数さん:2005/04/29(金) 18:15:27
あ、すまん。条件を見落としてた。

660 :132人目の素数さん:2005/04/29(金) 18:17:11
ラグランジュの未定係数法と未定乗数法の違いって何ですか?
教科書で見る限り
・2変数と3変数の違い
・+と-の違い
が式から見て取れます
実際のところはどうなんでしょうか?

661 :132人目の素数さん:2005/04/29(金) 18:28:33
このスレって工房クラスの問題は駄目?

662 :132人目の素数さん:2005/04/29(金) 19:08:14
専用スレのほうがベター

663 :132人目の素数さん:2005/04/29(金) 19:28:24
>>660
なんだ、見て分からんのか? 他にもケツから3文字目が違ってるじゃないか !


664 :132人目の素数さん:2005/04/29(金) 20:21:34
「2,4,6や16,18,20のような、連続する3つの偶数の和は6の倍数である。」
このことを、自然数をあらわす文字nを使い、最も小さい偶数を2nとして説明せよ。

665 :132人目の素数さん:2005/04/29(金) 20:27:39
>>663

解読不明なんですけれども
わかりやすく説明してください。


666 :132人目の素数さん:2005/04/29(金) 20:28:53
2n+(2n+2)+(2n+4)=6n+6=6(n+1)

667 :660:2005/04/29(金) 20:47:48
>>663
解読不明なんですけれども
わかりやすく説明してください

ちょっと、生意気な口調でカキコしてしまいましたが、ケンカするつもりではありません。
663さんごめんなさい

直接問題をupしてみました。
http://www2.ocn.ne.jp/~y2knen/ragu.JPG

よろしくお願いします。

668 :BlackLightOfStar ◆ifsBJ/KedU :2005/04/29(金) 21:55:23
Re:>655
XがR^nの開集合のとき、Xのある二点a,bが孤で結べないとすると、
aのある近傍U⊂Xをとると、Uのどの点も、bと孤で結べない。
これはXが連結でないことを示す(?)。

669 :132人目の素数さん:2005/04/29(金) 22:43:58
>>668
>XがR^nの開集合のとき
うーんR^nで,連結⇔弧状連結は別にいいんですが
Xが位相多様体ですから…うーん困ったなあ解けない

座標近傍系をうまく使うとはおもうんですけど
Xが局所連結であることをいえればすぐいえそうですが
あーワカランっすよ


670 :132人目の素数さん:2005/04/29(金) 23:09:01
>>660

係数と乗数がどういう意味か考えれば、僕が 663 見たいな事を言った意味が分かると思うよ。

どんな教科書をよんだら、
> ・2変数と3変数の違い
> ・+と-の違い
なんてのが読み取れるのやら。と思ったもんだから。ちょっと皮肉っぽい気分になってしまたのさ。
ただ、どうやら、まじめに聞いているみたいなんで、こちらも襟を正してまじめに答えると。

1. ラグランジュ未定係数法というのは、聞いたことがない。未定乗数法の間違いだろう。

2. ラグランジュ未定乗数法は、別に変数がいくつあってもラグランジュ未定乗数法
であり、名前が変わることはない。

3. 符号は、どちらをとっても、正しくやれば、得られる結果は同じ。どちらも見たことがある。

もし、本当に、
> ・2変数と3変数の違い
> ・+と-の違い
こんな違いが読み取れるなら、そんな教科書は捨てたほうが良い。

671 :132人目の素数さん:2005/04/29(金) 23:13:14
2点 A(1,-2),B(3,1)から等距離にある
直線 y=2x-1上の点を求めよ。

お願いします

672 :132人目の素数さん:2005/04/29(金) 23:17:01
>>671
1 A(1,-2),C(x,y)の距離=B(3,1),C(x,y)の距離
2 y=2x-1
3 xを求める

673 :671:2005/04/29(金) 23:20:15
なるほど。
簡潔でよく分かりました!
ありがとうございます

674 :132人目の素数さん:2005/04/29(金) 23:27:24
>>669
> Xが局所連結であることをいえればすぐいえそうですが
各点の座標近傍は弧状連結。

675 :132人目の素数さん:2005/04/29(金) 23:47:58

           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  あまりにも簡単すぎますね
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 教科書を読みましょう・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


676 :132人目の素数さん:2005/04/29(金) 23:50:03
>>674
you win

677 :660:2005/04/30(土) 00:01:32
>>670
同じ結果が得られて名前が違うってところが自分でも気になってたんです。

良かったら、問題の答えいただけませんか?

678 :132人目の素数さん:2005/04/30(土) 00:05:47
>>655
a,b∈X について a と b が弧で結べる時 a〜b であると定義すると、この関係〜は X 上の同値関係になる。
この同値関係による同値類を [a],[b],[c] などと表すことにする。この各同値類たちはそれぞれ弧状連結である。
X が弧状連結であることは X=[a] と表されることと同値である。
ここで[a]の任意の元 x について
x の座標近傍の元はすべて x と弧状連結であり、すなわち a と弧状連結であるので x の座標近傍は[a]に含まれる。
したがって[a]は開集合である。

X が弧状連結でないとすると、 X は2つ以上の同値類の和集合として表される。
しかし各同値類たちはそれぞれが開集合なので、これは X が連結であることに矛盾する。

679 :132人目の素数さん:2005/04/30(土) 00:06:42
三角錐で稜線の長さと底面積の大きさがわかっているときって
どうやって高さをもとめるんでしたっけ?

680 :132人目の素数さん:2005/04/30(土) 00:55:30
>>679
それだけではなんともいえないが
全ての辺の長さが分かっているのであれば
底面に垂線を下ろして三平方の定理

681 :132人目の素数さん:2005/04/30(土) 01:27:11
>>680
ありがとう
三平方の定理わすれてたw


682 :132人目の素数さん:2005/04/30(土) 01:37:27
>>677

正直、そこまで親切にしてやる気にはなれない。
なぜ、自分の手を動かそうとしないのか?
クロスタームがないから、馬鹿みたいに簡単な問題だ。答えも簡単な形だしな。
手を動かした上で、何か分からないことがあるなら、正直にそれを書いたら?
まさか、log が単調増加関数だ、というのを理解していない訳ではあるまいな。

683 :660:2005/04/30(土) 08:30:57
ではもうひとつのほうで聞きなおします
とりあえず自分では計算しましたが答えがないもので。
♪♪♪ d(`Д´)b♪♪♪サンキュ ございました。

684 :132人目の素数さん:2005/04/30(土) 12:09:18
Gを群とし、N_1,N_2をGの正規部分群とする。
このとき、N_1かつN_2={e}(eは単位元)ならば、
N_1の任意の元xとN_2の任意の元yは可換である。
すなわちxy=yxとなることを示せ。

お願いします。
N_1かつN_2とN_1N_2がGの正規部分群なのは示せたのですが・・・

685 :132人目の素数さん:2005/04/30(土) 12:36:01
>>684
以外と簡単だったので,種々の定義を正しく覚えているかどうか、やや不安ですが...
p\in N_1, q\in N_2 とします。
p^{-1}q^{-1}pq=[p^{-1}q^{-1}p]q=p^{-1}[q^{-1}pq]
定義から、中辺の[]内は N_2 の元 よって、N_2 は群をなすから、中辺は \in N_2
右辺は、同様に \in N_1
よって、左辺は e。終わり。なんか間違ってそう...

686 :132人目の素数さん:2005/04/30(土) 13:02:47
質問させてください。

0.5√2を分数で表示すると1/√2になるというのがよく分かりません。
どうしても√2/2のような気がして困ってます。
どなたかやさしく教えて下さい。
数学苦手でもう嫌です。・゜゜・(>_<)・゜゜・。

687 :132人目の素数さん:2005/04/30(土) 13:17:11
2×2=2だから、2/2=1/2

688 :132人目の素数さん:2005/04/30(土) 13:27:56
687さん ありがとうございました!!!
お陰でとってもすっきりしました\(*´∀`*)/
ところで、分母を√で表示するのが一般的なんでしょうか?
どの問題も分母が√になっていたので・・・


689 :132人目の素数さん:2005/04/30(土) 14:41:05
>>685
\inって何ですか??
レスありがとうございます!

690 :132人目の素数さん:2005/04/30(土) 15:00:08
>>689
LaTeX で∈ って、このコマンドじゃなかったっけ?

691 :132人目の素数さん:2005/04/30(土) 15:06:34
e^iπ=-1
対数をとって
iπ=log(-1)

a>0のとき
log(-a) = log(-1*a) = log(-1)+loga
= iπ+loga

これってあってます?

692 :132人目の素数さん:2005/04/30(土) 15:11:23
>>691
複素数まで込みにして、log(z)=log(|z|)+i arg(z) と定義するのが普通だと思う。
角度には、2nπの不定性があるので、それをどう取り扱うかが問題。
角度の範囲を決めて、1価関数にするか、多価関数として扱うか。
あんまりよく考えていなそうだから、とりあえず、間違いだと言っておこうかな。
同じ論法を e^{3iπ} に適用してみなよ。

693 :132人目の素数さん:2005/04/30(土) 15:18:17
わかりました!解りやすい説明、あざーす。

694 :132人目の素数さん:2005/04/30(土) 16:19:10
3辺の中点の座標が(5,2)(6,9/2)(3,7/2)
である三角形の三つの頂点の座標を求めよ

考え方だけでも教えてください

695 :132人目の素数さん:2005/04/30(土) 16:36:05
C=n+r-1Cr

n=5
r=3

計算手順が知りたいです。

696 :考へ方研究者:2005/04/30(土) 16:43:39
>694
 OA↑ = (OA↑+OB↑)/2 -(OB↑+OC↑)/2 +(OC↑+OA↑)/2 = (5,2) -(6,9/2) +(3,7/2) = (2,1) etc.


697 :132人目の素数さん:2005/04/30(土) 17:09:04
3頂点を(x1,y1), (x2,y2), (x3,y3) とすると、
x1+x2=10, x2+x3=12, x3+x1=6、y1+y2=4, y2+y3=9, y3+y1=7 より、
(2,1), (8,3), (4,6)

698 :132人目の素数さん:2005/04/30(土) 18:02:26
>>697>>696
ありがとうございます。よく分かりました

699 :132人目の素数さん:2005/04/30(土) 19:17:03
T(n)=k(n=1)
T(n)=T(n/2)+kn(n≧2)

という漸化式を解こうとしているのですがnが奇数、または3倍数
になった時の処理が分からないです。極限を使うのかと思ったのですが
見当ハズレっぽいです。どなたかご教授お願いいたします。



700 :132人目の素数さん:2005/04/30(土) 20:21:34
∫[0,∞] x^3 / (e^x - 1) dx
答えはπ/15らしいんだけど、どうやって導けばいいんでしょうか。
よろしくお願いします。

701 :132人目の素数さん:2005/04/30(土) 20:40:06
3点 A(-2,5)B(1,2)C(4,3)を頂点にもつ
平行四辺形の対角線の交点Pおよび
第四の頂点Dの座標を求めよ。

△ABCの重心をGとする時
(AB^2)+(AC^2)=(BG^2)+(CG^2)+(4AG^2)
が成り立つことを証明せよ
2問ありますがよろしくお願いします

702 :132人目の素数さん:2005/04/30(土) 21:05:53
平行四辺形ならば、2本の対角線は互いに中点で交わるから、
3点の位置関係から考えて、点A,Cの座標より P(x,y) とすると、x=(-2+4)/2=1, y=(5+3)/2=4
またD(a,b)は、点B,Pの座標より (1+a)/2=1 ⇔ a=1、(2+b)/2=4 ⇔ b=6

703 :132人目の素数さん:2005/04/30(土) 21:12:14
黄金週だけに黄金数の小数点第100位に興味があります。

教えてエロい方々。

704 :132人目の素数さん:2005/04/30(土) 21:15:17
ttp://nyushi.yomiuri.co.jp/nyushi/honshi/05/t01-21p/4.htm
↑おねがいしあmす

705 :132人目の素数さん:2005/04/30(土) 21:18:23
>>704
ttp://hiw.oo.kawai-juku.ac.jp/nyushi/honshi/05/t01.html

706 :132人目の素数さん:2005/04/30(土) 21:41:31
>699
未定義なものについて何を言った所でその人の思想でしかない

定義されている所と矛盾しないものを、どう勝手に定義するとよいのかなあという
自己主張合戦に過ぎないが、万人受けするものと玄人受けするものが評価が良いな

707 :132人目の素数さん:2005/04/30(土) 21:53:45
>>706
自分で上手く定義して何とかするってことですかね?

ってかきわすれてました。kは定数ですorz

708 :132人目の素数さん:2005/04/30(土) 22:41:58
>>707
その漸化式だと、T(1) = kから初めて
T(2^m) の形の数しか決めることができないから
nが奇数になるとしても 1だけ。
後は偶数か、1/2^m の形の分数


709 :132人目の素数さん:2005/04/30(土) 22:44:16
【線形空間(外積?)】
@(a,a*b)=0

  |(a,a) (a,b)|
A||a*b||^2=| |
  |(b,a) (b,b)|

ヒロシです…。
解説がないので分かりませぇ〜ん…。
とうとうやる気まで失われてきたとです…。

710 :132人目の素数さん:2005/04/30(土) 22:48:03
>>709 訂正
A||a*b||^2=|(a,a) (a,b)|
  |(b,a) (b,b)|

711 :132人目の素数さん:2005/04/30(土) 22:55:01
0<P<1 0<R<1の時
0≦1-(1+b^2)/((b^2/R)+1/P)≦1を示せ(b:任意の実数)
って問題なんですが、どうやって証明すればよいでしょうか?
どなたかご教授宜しくお願いします。

712 :132人目の素数さん:2005/04/30(土) 23:00:10
>>708
と言うことはnが奇数であると言うことはありえないとしてしまってよいのですかね?
1/2^m の形の分数 も未定義なので一般項がつくれないんですけど・・・・。


713 :132人目の素数さん:2005/04/30(土) 23:10:08
>>709
(a,a*b)=|a a b|=0

||a*b||^2+(a,b)^2=||a||^2||b||^2 から
||a*b||^2=||a||^2||b||^2-(a,b)^2

714 :132人目の素数さん:2005/04/30(土) 23:29:20
>>711
P≦R なら (b^2+1)/R ≦ (b^2/R)+1/P ≦ (b^2+1)/P
よって
min(P,R) ≦ (1+b^2)/((b^2/R)+1/P) ≦ max(P,R)

715 :711:2005/05/01(日) 00:56:30
>>714
お答えありがとうございます。
min(P,R) ≦ (1+b^2)/((b^2/R)+1/P) ≦ max(P,R)
これのmin(P,R)というのはPとRの内小さい方という意味ですよね。
これが求まったら0≦1-(1+b^2)/((b^2/R)+1/P)≦1って言えるんですか?
そこらへんのところを詳しくお願いします。

716 :711:2005/05/01(日) 01:17:22
>>714
あ、わかりました。
PとRに挟まれているから0<(1+b^2)/((b^2/R)+1/P)<1ってことですね。
とてもうまいやり方に感動しています。
私は左の不等式と右の不等式の2つに分けて証明していたのでとてもややこしくなってしまいました。
ありがとうございました。

717 :132人目の素数さん:2005/05/01(日) 01:21:32
ε-δ論って何ですか?
極限の定義のことなんでしょうか?

718 :132人目の素数さん:2005/05/01(日) 02:10:14
>700
 1/(e^x -1) = e^(-x)/{1-e^(-x)} = Σ[k=1,∞) e^(-kx)
 ∫_[0,a] (x^n)e^(-kx)dx = {1/[k^(n+1)]}∫_[0,ka] (y^n)e^(-y)dy
 ∫(y^n)e^(-y)dy = -{y^n + n・y^(n-1) + … + (n!)y + (n!)}e^(-y) + c. (←部分積分n回)
 ∴ ∫_[0,∞) (y^n)e^(-y)dy = (n!)∫_[0,∞) e^(-y)dy = n!
 ∴ I_n ≡∫_[0,∞) (x^n)/(e^x -1) dx = n! Σ[k=1,∞) 1/[k^(n+1)] = n!ζ(n+1).
 n=3 のとき、I_3 = 6× (π^4)/90 = = 6.49393940226683…

719 :132人目の素数さん:2005/05/01(日) 02:21:34
>>717
そうです。
「xをaに近づけたときのf(x)の極限がAであるとは、
“どんなに小さな正の数εを与えても十分小さい正の数δをとれば
0<|x−a|<δのとき|f(x)−A|<εがなりたつ”こと」
これが関数極限のε-δ法。数列極限でも似たようなもんです。

720 :132人目の素数さん:2005/05/01(日) 02:32:49
>>719
どうもありがとうございます。
解析の本をいくら探しても載ってないんで、
何なんだろうと思ってました。よく解りました。

721 :132人目の素数さん:2005/05/01(日) 03:17:37
>>700
これって量子論のだな

722 :132人目の素数さん:2005/05/01(日) 03:24:46
>>701
BCの中点をMとする。

AB^2+AC^2
=2(AM^2+BM^2)  (中線定理)
=2(AG+GM)^2+2BM^2
=2AG^2+4AG*GM+2(GM^2+BM^2)
=2AG^2+4AG*(AG/2)+BG^2+CG^2 (中線定理)
=4AG^2+BG^2+CG^2

723 :132人目の素数さん:2005/05/01(日) 07:47:51
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< その父親は死刑です
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 最低ですね・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



724 :132人目の素数さん:2005/05/01(日) 10:05:01
小学校の統一学力テストは算数はワクワク算数ランドから出題されたみたいだね。


725 :デバイ:2005/05/01(日) 10:20:45
>721
 E(T) = 9Nkθ(T/θ)^4・∫_[0,θ/T] (x^3)/(e^x -1) dx
 C(T) = dE/dT = 9Nk{4(T/θ)^3・∫_[0,θ/T] (x^3)/(e^x -1) dx − (θ/T)/[e^(θ/T) -1]}
 T: 絶対温度 [K]
 k: ボルツマン定数 1.380650×10^(-23) [J/K]
 θ: デバイの特性温度 [K]

726 :132人目の素数さん:2005/05/01(日) 10:49:47
http://mathworld.wolfram.com/RiemannZetaFunction.html
∫[0,∞] x^3 / (e^x - 1) dx =ζ(4)Γ(4)=4!(π^4)/90



727 :132人目の素数さん:2005/05/01(日) 10:59:10
y=5x+6とy=5x−3の連立方程式を解け

728 :132人目の素数さん:2005/05/01(日) 12:13:33
解なし

729 :132人目の素数さん:2005/05/01(日) 12:49:04
球面上なら解がある

730 :132人目の素数さん:2005/05/01(日) 13:24:18
なぜ[0,1]が境界のある多様体で境界は{0,1}であることがわかりません。

731 :718:2005/05/01(日) 15:24:36
>726
 Γ(4)=3! らしいよ。。。

732 :132人目の素数さん:2005/05/01(日) 16:54:12
方程式y=x^2 (0≦x≦1)の長さを求めよ。
どうしても解けません。教えてエロい人



733 :132人目の素数さん:2005/05/01(日) 16:59:51

           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< 教科書を読みましょう
  iハ l  (.´ヽ     _   ./    ,' ,' '  | がんばりましょうね・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



734 :132人目の素数さん:2005/05/01(日) 17:23:59
>>732
∫[0、1] √(1+y'^2)dx

735 :132人目の素数さん:2005/05/01(日) 17:58:43
>>734
すんません
そこからがとけねーんです。

736 :132人目の素数さん:2005/05/01(日) 18:04:42
∫[0、1] √(1+4x^2)dx
=[2√(1+4x^2)/24x][0、1]

737 :132人目の素数さん:2005/05/01(日) 18:25:57
L = ∫[0〜1] √{1+(2x)^2} dx、
ここで 2x+√(1+4x^2) = t とおくか、あるいは 2x=tan(θ) とおいて置換汁。
因みに前者でやった場合、dx = √(1+4x^2)/{2(2x+√(1+4x^2))} dt、
また、2x+√(1+4x^2) = t ⇔ 1+4x^2 = (t-2x)^2 ⇔ x=(t^2-1)/4t より、
(1/8)∫[1〜2+√5] (t^2+1)^2/t^3 dt = (√5/2) + log(2+√5)/4

738 :132人目の素数さん:2005/05/01(日) 19:30:36
お願いしますm(_ _)m


次の等差数列の項数を求めよ。

初項42 公差-3 和0

739 :132人目の素数さん:2005/05/01(日) 19:33:24
>>738
初項42公差-3なら一般項が表せるだろ.
一般項が表せたら和も表せるだろ.

740 :132人目の素数さん:2005/05/01(日) 19:34:33
an+1=an-3
a1=42
Σan=0
42+(42-3)+(42-2*3)+...=0
42n-(n-1)n3/2=0

741 :Mozilla in X11:2005/05/01(日) 19:35:03
>>736 >>737
そんなことしなくても、$2x = \sinh t$ と置換すればかなり計算が楽。
因みに $\sinh t = \frac{e^t - e^{-t}}{2}$

742 :132人目の素数さん:2005/05/01(日) 19:36:23
42/3*2-1=27

743 :132人目の素数さん:2005/05/01(日) 19:39:23
微分方程式(p^2+1)^2-(px-y)^2=0 ただしp=dy/dx

移行してルートを外してみたのですが、そこからが分かりません。
よろしくお願いします。

744 :132人目の素数さん:2005/05/01(日) 19:40:17
等差数列の者だす。


87n/2 - 3n^/2まででました。

そこからが分かりません(T_T)

745 :132人目の素数さん:2005/05/01(日) 19:43:35
>>743
因数分解してみたら?

746 :132人目の素数さん:2005/05/01(日) 19:43:47
42,39,36,33,30,27,24,21,18,15,12,9,6,3,0,
-3,-6,-9,-12,-15,-18,-21,-24,-27,-30,-33,-36,-39,-42,

27

747 :132人目の素数さん:2005/05/01(日) 19:44:36
>>744
nの2乗は「n^2」な.
第n項までの和がn(87-3n)/2とわかったわけだ.
「和が0になる」のはnがいくつのときか,という問題だったんで方程式を
つくって解いてしまえ.

748 :132人目の素数さん:2005/05/01(日) 20:04:17
等差数列の者だす。方程式を作っても解けません。答えは答えは 29 なんですけど(||゚Д゚)

749 :132人目の素数さん:2005/05/01(日) 20:07:22
ガムバッテ29項目まで式を書いて見よう。それでも証明になる。

750 :132人目の素数さん:2005/05/01(日) 20:07:32
42/3*2+1=29

42,39,36,33,30,27,24,21,18,15,12,9,6,3,0,
-3,-6,-9,-12,-15,-18,-21,-24,-27,-30,-33,-36,-39,-42,

29

751 :132人目の素数さん:2005/05/01(日) 20:14:44
>>748
n(87-3n)/2=0という二次方程式を解けばいい.

752 :132人目の素数さん:2005/05/01(日) 20:15:21
等差数列のものだす


87n/2 - 3n^2/2

まで公式で出たので、
2をかけて

87n - 3n^2 = 0
3n^2 - 87n = 0
n^2 - 29n = 0
n - 29 = 0
n = 29

でいいんですか??

753 :132人目の素数さん:2005/05/01(日) 20:17:41
>>752
n^2-29n=0のつぎは
n(n-29)=0
n=0,29
としなきゃ.
n=0は不適当なんでn=29だ.

754 :132人目の素数さん:2005/05/01(日) 20:21:39
↑↑↑そうですね☆ありがとうごぜぇますッッッ(●´艸`)

755 :132人目の素数さん:2005/05/01(日) 20:22:14
A町から20Km離れたB町へ行くのに、自転車で時速12Kmで走っていたが
途中で自転車が故障したので、それからは時速4Kmであるいたところ、B町
につくまでの所要時間は3時間以下であった。自転車が故障したのは、A町から何Km以上の地点か。

答えは「12以上」の1時不等式の問題です。
よろしくお願いします。

756 :132人目の素数さん:2005/05/01(日) 20:25:55
自転車で走った距離をxkmとすると歩いた距離は(20-x)kmだから

x/12+(20-x)/4≦3

757 :132人目の素数さん:2005/05/01(日) 20:26:08
>>755
マルチはよろしくない.

758 :132人目の素数さん:2005/05/01(日) 20:29:38
>>756
ありがとうございます。
>>755
すいません

759 :132人目の素数さん:2005/05/01(日) 20:31:17
さっき平成教育予備校を見ていた人はいませんか?
仕事算がわかりません。
自分なりにずっと考えているのですが・・・

760 :132人目の素数さん:2005/05/01(日) 20:35:50
4人で3時間かけて終わる仕事を
5人が1時間やりました。
残りの仕事を1人でする場合何時間かかりますか?

761 :132人目の素数さん:2005/05/01(日) 20:42:07
∫[t=0,1] {2πi*exp(2πit)/exp(2πit)-α}*{2πi*exp(2πit)/exp(2πit)-α}\ dt

ただし\は複素共役、αは|α|≠1の任意の複素数

よろしくおねがいします。

762 :132人目の素数さん:2005/05/01(日) 20:50:31
仕事の量をW、1人あたりの仕事をこなす速さをvとすると、
4v*3=12v=W より、{W-(5v*1)}/v=(12v-5v)/v=7時間

763 :132人目の素数さん:2005/05/01(日) 20:58:14
>>762
ありがとうございます。
4速さ×3=12速さ 12仕事量−(5速さ×1)/速さ=(12速さ−5速さ)/速さ=7時間

もう少し考えます!

764 :仕事算:2005/05/01(日) 21:03:43
因みに答えは3時間半でした。
わかりやすく考えたら簡単らしいですが、わからないです。
でもわかるまでずっと考えたいです。

765 :132人目の素数さん:2005/05/01(日) 21:05:17
>>764
答えは7時間であってる.

766 :仕事算:2005/05/01(日) 21:09:58
じゃあ、問題が間違ってるのかな?
実況スレにいたのですが、みんな簡単にわかってました。
仕事算でぐぐったけど難しかったです。
悔しいのでクイズ番組の謎は保留して絶対に!仕事算を理解したいです。
この話題にもっと相応しい板・スレはあるでしょうか?
クイズ雑学板には無かったです。

767 :仕事算:2005/05/01(日) 21:16:04
低学歴で、軽い趣味程度に算数・数学興味がある者が
気軽に参加できるスレはあるんでしょうか。
どのスレもレベルが高くて・・・。
多分学力は小4程度くらいなので居場所が無いです。
パズル板は大好きです。

768 :132人目の素数さん:2005/05/01(日) 21:18:37
低学歴といっても中学くらいの知識はないと
いくらなんでも厳しいと思う
ちなみに数学は基本的にインターネットで議論する
学問じゃなくて,自分で勉強する学問ですよ

769 :132人目の素数さん:2005/05/01(日) 21:19:02
y=tan^2(3x+π/4)
を微分する時の途中式と答えを教えていただけませんか?


770 :132人目の素数さん:2005/05/01(日) 21:21:51
u=3x+π/4とおいて、まずyをuの式だと思って微分
その後、uをxで微分して,掛け算.

771 :132人目の素数さん:2005/05/01(日) 21:22:06
          ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l    ____________
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  /教科書読みましょう。
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< その程度自分でやりましょう。
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 脳味噌ありますか?
   |l. l  ` ''丶  .. __  イ         |無いんですか?
   ヾ!        l.   ├ァ 、        \それなら学校辞めましょうよ。
          /ノ!   /  ` ‐- 、      ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


772 :べーた β5:2005/05/01(日) 21:22:25
高校生のための数学質問スレより

m≠nのとき2定点A、Bに対しAP:BP=m:nを満たす点Pの軌跡は、線分ABをm:nに内分する点と外分する点を直径の両端とする円となる証明をして下さい。

正四角錐OABCDにおいて、AからOBへ下ろした線をAEとする。
隣り合う2つの側面のなす角は、AEが垂線である時のみ、角AECに等しい。
これはなぜでしょう?もしくは証明してください。

あのスレにイミフな事書かれていましたが、返答しときます。
まず、あと数学のセンスというのはバカみたいに問題を解いて付くものであり、
才能ではないと思われます。そしてオレは問題は解かない。あったって得もないので。
ついでに言うと前の解答は言葉足らずで、分かるわけがない。

773 : ◆27Tn7FHaVY :2005/05/01(日) 21:23:10
教科書嫁

774 :132人目の素数さん:2005/05/01(日) 21:24:46
>>767
とりえず本屋でも行って、この本読んだらどうかなぁ、
http://www.amazon.co.jp/exec/obidos/ASIN/4062574330/ref=pd_sim_b_dp_1_1/250-0952674-4215432

775 :仕事算:2005/05/01(日) 21:26:18
>>768
そうですね。中学、高校時代は得意科目でしたが、全部忘れてしまったんですよ。
そういえば、授業はロクに聞かないで独学で理解していってました。
本屋で大人向けの算数本、数学本を熟読してから、またこの板に遊びに来ますね。

776 :べーた β5 772 776:2005/05/01(日) 21:27:16
実数x、yがx^2+y^2=1を満たすとき、x+y^2の最大値と最小値を求めるような問題で、
x+y^2にy^2=1−x^2を代入して平方完成してグラフを書きますが、
なぜ、それより前にxの値の範囲を先に求めておく必要があるのでしょうか?
オレだったら絶対普通にグラフ書いて解くんですが、間違いですよね?範囲指定されてるならば・・・

777 :仕事算:2005/05/01(日) 21:28:08
>>774
教えてくださってありがとうございます。

778 :132人目の素数さん:2005/05/01(日) 21:30:45
>>771
お前には違う本が必要だな。数学の本以外読むことを進める。
精神的に幼稚。友達いないんじゃないか。

779 :132人目の素数さん:2005/05/01(日) 21:41:44
>>772
A,B,Pの座標を(0,1),(0,-1),(x,y)とかおいて,
AP/BP=m/nの式をx,yの式に直してひたすら計算する.

>数学のセンスというのはバカみたいに問題を解いて付くものであり、
>才能ではないと思われます。
受験数学のセンスはね.ただ、そういう丁寧な回答が欲しいなら
受験板で質問したほうが良いよ.
数学板では簡潔に書けば書くほど良い、と考える人が多いから

780 :132人目の素数さん:2005/05/01(日) 21:43:50
>>776
別に前でもあとでも良いけど、
xは-1≦x≦1の範囲しか動かないから
範囲は求める必要がある。たとえばx=2のとき
x^2+y^2=1となるようなyは存在しないでしょ

781 :べーた β5 772 776:2005/05/01(日) 22:47:24
>>780
なんで二乗だったらそういう作業が必要なんでしょーね

782 :132人目の素数さん:2005/05/01(日) 22:56:20
>>761
{2πi*exp(2πit)/exp(2πit)-α}*{-2πi*exp(2πit)/-exp(2πit)-α}
(2π/cos2πt+isin2πt-α)*(2π/cos2πt-isin2πt*cos2πt-α)
4π^2/1-2αcos2πt+α^2

2πt=θ dt=(1/2π)dθ
∫[t=0,2π] 2π/1-2αcosθ+α^2
=2π/1-α(e^iθ+e^-iθ)+α^2

z=e^iθ dz=ie^iθ dθ=1/izdz
=2π/1-α(z+1/z)+α^2
=2π/i(z-αz^2+α+zα^2)
=2πi/(αz^2+z-(α^2+1)z+α)
=2πi/(αz-1)(z-α)

if |α|<1;
Res(α)=lim[z→α](z-α){2πi/(αz-1)(z-α)}=2πi/(α^2-1) ∴I=4π^2/1-α^2
else |α|>1;
2πi/α(z-1/α)(z-α)
Res(1/α)=lim[z→1/α](z-1/α){2πi/α(1/α)(z-α)}=2πi/(1-α^2) ∴I=4π^2/α^2-1

783 :132人目の素数さん:2005/05/01(日) 22:56:57
>>781
さあ,なんででしょーね

784 :700:2005/05/01(日) 23:02:45
>>718
ありがとん

785 :132人目の素数さん:2005/05/01(日) 23:27:56
曲線y=ax(x-2)(0≦x≦2)上の動点pがあり、原点を0としたときOPの長さが2以下になるようにaを定めよ、ただしaは正の実数とする。

とりあえずP(t,at(t-2))と置いてやろうと思ったのですがよくわかりません。どなたかよろしくお願いします。

786 :べーた β5 772 776:2005/05/01(日) 23:35:21
>>783
おしーえてーおじーちゃんー

787 :132人目の素数さん:2005/05/01(日) 23:39:28
>>786
2乗だから必要とかそういうんじゃなくて

x^2 +y^2 =1のグラフ、(つまり単位円)を描くと
このグラフ上の点のx座標はその範囲に留まることが分かる。
どんな場合も範囲というのは気にしないといけないよ。
決して、2乗だから求めるというわけではない。


788 :132人目の素数さん:2005/05/01(日) 23:48:45
φ(a)=∫_0^π log(1-2a*cosx+a^2)dxなる積分において

(1) 2φ(a)=φ(a^2)を示せ。

という問のあとに

(2) φ(a)を求めよ    

という問題があります。
(1)は他スレで分かったんですが、(2)がまだよく分かりません。
どう(1)を使えばよいのでしょうか。

789 :788:2005/05/01(日) 23:52:03
ごめんなさい。|a|≠1という条件があります。

790 :132人目の素数さん:2005/05/01(日) 23:57:00
>>788
(1)の式を見ると、指数が係数になるあたりからして

φ(a) は log(a)に似てるから
φ(a) = c log(a)という予想を立てる。



791 :132人目の素数さん:2005/05/01(日) 23:57:02
>>788-789
マルチ逝ってよし
◆ わからない問題はここに書いてね 163 ◆
http://science3.2ch.net/test/read.cgi/math/1114465980/355-362

792 :132人目の素数さん:2005/05/01(日) 23:58:51
SPIができないよ
誰か助けて
このままじゃ就職できないよ

793 :132人目の素数さん:2005/05/01(日) 23:59:10
>>792
あきらめろ。

794 :132人目の素数さん:2005/05/02(月) 00:00:20
>>791
いや、分かってるんですがついつい…

確かにlogは出てくる気はします。

795 :132人目の素数さん:2005/05/02(月) 00:02:21
数列の問題です。
数列{an}でa1=3,
an+1=2(an)+3^n+1,
この数列の一般項を教えてください。

796 :べーた β5 772 776:2005/05/02(月) 00:03:34
>>787
その範囲にとどまるとは??

797 :132人目の素数さん:2005/05/02(月) 00:12:47
>>793
あきらめられないよ
SPIの本三日前買ったばかりなんだけど集合のところが分からない
頼むから教えてくれ

798 :132人目の素数さん:2005/05/02(月) 00:16:27
>>796
単位円の上の点は
-1≦x≦1を満たすのは
グラフでも見れば分かる事。

799 :132人目の素数さん:2005/05/02(月) 00:28:13
>>795
式を正確に書いてくれ。

800 :132人目の素数さん:2005/05/02(月) 00:29:01
>>795
an=3^n+2^(n-1)-1
この程度ならチャート式にやり方が載っているのでは?

801 :べーた β5 772 776:2005/05/02(月) 00:31:28
>>798
そういう意味ですか。
普通に代入法だけで解こうとすると絶対に間違いますね・・・。
いや、そうでもないかな。。
やっぱ2乗に代入するって事に気づくべきなのか。。

802 :べーた β5 772 776:2005/05/02(月) 00:32:02
てか黄チャやっとけばマサチューセッツやオックスフォードぐらいなら受かりますよね?

803 :べーた β5 772 776:2005/05/02(月) 00:34:13
というかアレか。
yが2乗になってる所に気づかなければいけないわけですね?
この場合、xの値によっちゃ虚数になるから、いけないんですね。

804 :132人目の素数さん:2005/05/02(月) 00:48:59
http://www.halhal.net/~100man/
この節約サイト使いたいんだけど、使った人いる?感想聞かせて
この人ホント凄過ぎ

805 :132人目の素数さん:2005/05/02(月) 02:15:03
>>801
2乗だからとかそうじゃないからとかじゃなくて,
xとyの満たすべき関係式があるのだから
xの変域が実数全体出ないことには気づくべき

>>802
無理

806 :132人目の素数さん:2005/05/02(月) 02:32:03
>>802
マサチューセッツ高校やオックスフォード高校ならなんとか。
もちろん、英語力はいるけど。

807 :132人目の素数さん:2005/05/02(月) 02:33:52
いいから、べーたは放置汁。

808 :132人目の素数さん:2005/05/02(月) 02:37:20
べーた は受験数学しか興味ないのに
全く関係ないスレに出てきて変なこと書くから
うざいんだよな

809 :132人目の素数さん:2005/05/02(月) 02:45:47
べーたのうざさはそんな表面的な理由じゃない

810 :132人目の素数さん:2005/05/02(月) 02:49:20
アホ過ぎる質問をする高校生に限って、「国語はトップだ」と
うそぶくのは何故だろう

811 :132人目の素数さん:2005/05/02(月) 02:49:56
あとは自分を過大評価して他人を過小評価することとか
質問してるのに態度が大きすぎることとかかな

というか,質問する側がトリップつける意味が
そもそも分からないけどね.
答えて欲しいなら匿名で質問したほうがいいのに

812 :132人目の素数さん:2005/05/02(月) 02:56:11
変な成りすましがでることもあるし
質問者のトリップは無意味ではないと思う。

813 :132人目の素数さん:2005/05/02(月) 02:56:46
ごめん、トリップじゃなくて固定ハンドルだ

814 :132人目の素数さん:2005/05/02(月) 02:58:02
>>811
別にトリップは付けてないよ、べーたは。
ただのコテハンつか、トリの付け方知らんという説も。

まあ、自己顕示欲だけが人並み外れている
ある意味異常者というべきか。

815 :132人目の素数さん:2005/05/02(月) 02:59:33
>>788-789
 a≧1のときは [790]の指摘のように φ(a) = 2π・log|a|
 a≦1のときは φ(a) = 2π・log|a| +φ(1/a) =0.

 森口・宇田川・一松: 「数学公式I」 岩波全書221, p.260 (1956.9)
 M.R.スピーゲル(氏家勝巳・訳): 数学公式・数表ハンドブック, p.100, 15-108 (1984.9)

816 :132人目の素数さん:2005/05/02(月) 03:11:21
化学板はじめていってみた。べーたpHもわかんねぇの?プギャー

817 :132人目の素数さん:2005/05/02(月) 03:36:37
>>815
ありがとうございます。

しかし…導出が中々思いつきません!それを読めということでしょうか…?

818 :132人目の素数さん:2005/05/02(月) 04:21:40
>>817
φ(a)=∫_0^π log(1-2a*cosx+a^2)dx を a で微分。
φ'(a)=∫_0^π {2(a-cosx)/(1-2a*cosx+a^2)} dx
t=tan(x/2) とおいて整理する。
φ'(a)= 4∫_0^∞ {(a+1)t^2+(a-1)}/[{(a+1)^2t^2+(a-1)^2}(t^2+1)] dt
=4∫_0^∞ [{(a-1)/(2a(a+1))}*1/{t^2+((a-1)/(a+1))^2} + (1/(2a))*{1/(t^2+1)}] dt
=4[{(a-1)/(2a(a+1))}*{|(a+1)/(a-1)|}(π/2) + 4(1/(2a))*(π/2)
=(2π/a)*{(a^2-1)/|a^2-1| + 1}

φ(0)= 0 だから
φ(a)=2πlog|a| * {(a^2-1)/|a^2-1| + 1}

819 :132人目の素数さん:2005/05/02(月) 04:24:57
数列の極限の問題
次の数列の極限値を求めよ
a^n/n!(a>0)

誰か教えてください

820 :計算ミス:2005/05/02(月) 04:29:43
=(π/a)*{(a^2-1)/|a^2-1| + 1}

φ(0)= 0 だから
φ(a)=πlog|a| * {(a^2-1)/|a^2-1| + 1}

821 :132人目の素数さん:2005/05/02(月) 04:32:11
>>819
Σ[n=0,∞] a^n/n! = e に収束するので
lim[n→∞] a^n/n!= 0

822 :132人目の素数さん:2005/05/02(月) 04:33:31
Σ[n=0,∞] a^n/n! = e^a に収束するので
lim[n→∞] a^n/n!= 0

わりぃ。もう寝る。

823 :132人目の素数さん:2005/05/02(月) 04:40:46
>>822
(a>0という条件は不要でつね。)
Σ[n=0,∞] a^n/n! = e^a なので
lim[n→∞] a^n/n!= 0
と書く方がよりいいかと。

824 :132人目の素数さん:2005/05/02(月) 11:38:23
>>819
822ほどカッコ良くはないけど正攻法。
aより大きな適当な自然数をpとする。
n≧pの時
a^n/n!
=(a/1)(a/2)(a/3)…(a/p)(a/(p+1))…(a/n)
≦(a/1)(a/2)(a/3)…(a/p)(p/(p+1))…(p/n)
≦(a/1)(a/2)(a/3)…(a/p)(p/(p+1))…(p/(p+1))
=((a^p)/p!)(p/(p+1))^(n-p)

p/(p+1)<1なのでlim[n→∞](p/(p+1))^(n-p)=0
だからlim[n→∞]((a^p)/p!)(p/(p+1))^(n-p)=0
挟み打ちの原理でa^n/n!の極限値も0

825 :132人目の素数さん:2005/05/02(月) 12:19:08
>>818
ありがとうございます。
二行目なんですが、それはルベーグ積分の話に基づいたものなんでしょうか?

826 :132人目の素数さん:2005/05/02(月) 15:58:55
>>785
どなたかお願いします。

827 :べーた LV5:2005/05/02(月) 16:07:38
PH!!!!!!!!!!!
m≠nのとき2定点A、Bに対しAP:BP=m:nを満たす点Pの軌跡は、線分ABをm:nに内分する点と外分する点を直径の両端とする円となる証明をして下さい。

正四角錐OABCDにおいて、AからOBへ下ろした線をAEとする。
隣り合う2つの側面のなす角は、AEが垂線である時のみ、角AECに等しい。
これはなぜでしょう?もしくは証明してください。



828 :132人目の素数さん:2005/05/02(月) 16:15:11
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< うるせーよ
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 二度と来るな・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


829 :132人目の素数さん:2005/05/02(月) 16:17:04
教えてください。
A⊂Bのとき、A∩B ̄はどうなりますか?

830 : ◆27Tn7FHaVY :2005/05/02(月) 16:18:32
>>828
ワロス

831 : ◆27Tn7FHaVY :2005/05/02(月) 16:19:46
>>829
ベン図書くといいよ

832 :829:2005/05/02(月) 16:30:05
A∩Bはわかるのですが、Bの上に ̄がつくと分からなくなってしまいます・・・
AはBに含まれているのにBに含まれてなくて、Aと共通の部分・・・・?
考えても思いつきません。ご教授いただけると幸いです。

833 :132人目の素数さん:2005/05/02(月) 16:34:06
2x^3-3x^2-5x+6と4x^3-13x-6の約分の仕方を教えてください

834 :132人目の素数さん:2005/05/02(月) 16:34:41
>>829
A⊂Bのとき A ̄⊃B ̄ である。
すると A∩A ̄⊃A∩B ̄ が成り立ち、
A∩A ̄=φ だから A∩B ̄=φ 

835 :132人目の素数さん:2005/05/02(月) 16:41:59
>>833
まずは因数分解だ。

836 :833:2005/05/02(月) 16:45:35
>>835
すみません因数分解の間違えでした

837 :833:2005/05/02(月) 16:55:45
でやり方を教えてください

838 :132人目の素数さん:2005/05/02(月) 16:57:52
楕球の体積ってどうやってもとめるん?

839 :132人目の素数さん:2005/05/02(月) 16:59:53
>>837
両方とも xに2を代入すると0になるから、x-2 で割り切れる。

840 :132人目の素数さん:2005/05/02(月) 17:02:30
834さんありがとう御座いました!
喉のつっかえが取れました。

841 :132人目の素数さん:2005/05/02(月) 18:37:59
>>839ありがとうございます

842 :132人目の素数さん:2005/05/02(月) 18:46:37
>>737
仮に2x=tanθと置いたらどうなりますかね?
xが0〜1だからθは0〜α tanα=2とする?

843 :132人目の素数さん:2005/05/02(月) 19:21:27
∫[θ=0〜arctan(2)] dθ/cos^3(θ)=∫[θ=0〜arctan(2)] cos(θ)/cos^4(θ) dθ
=∫[θ=0〜arctan(2)] cos(θ)/{(1+sin(θ))^2*(1-sin(θ))^2} dθ、ここでsin(θ)=tとおくと、
=(1/4)∫[t=0〜2/√5] 1/(1+t)^2 + 1/(1-t)^2 + 1/(1+t) + 1/(1-t) dt

844 :BlackLightOfStar ◆ifsBJ/KedU :2005/05/02(月) 22:05:44
Re:>759 仕事算は掛け算と割り算をつかいこなすことが重要。仕事の量の単位を「時間人」とすると、やりやすい。たとえば四人で三時間の仕事をした場合の仕事量は12時間人となる。単位の名称がどうも変な感じはするが。


845 :132人目の素数さん:2005/05/02(月) 22:30:38
ベクトルa,b,c
(a*b)*c=(a,c)b-(b,c)a

↑両辺の成分表示を計算しようとしたのですがごちゃごちゃになって解けません。
スマートに解く方法があればご教授願います。(成分の解き方で可)

846 :132人目の素数さん:2005/05/02(月) 22:51:41
>>845
c=x(1,0,0)+y(0,1,0)+z(0,0,1) と置いて展開してみたら、
成分計算の見通しが良くなると思う。
もっと上手いやり方があるかも知れないが。

847 :132人目の素数さん:2005/05/03(火) 00:47:03
座標平面で、有理点(両座標が有理数である点)を3頂点とする
三角形の外心は有理点である。

この命題の真偽を判定せよ。

教えてください。

848 :132人目の素数さん:2005/05/03(火) 01:05:19
>>847
結論だけ言うと、真です。
簡単のため、三角形の1辺をx軸に重ね、
その辺のどちらかの端の点を原点に重ねる。(こうしても一般性は失われない)
3点の座標を(0,0)、(a,0)、(b,c)とする。
このとき、外心のx座標がa/2なのは明らか。
aは有理数なのでa/2も有理数。
次に2点(0,0)、(b,c)を結ぶ線分の垂直二等分線を考える。
この直線と、直線 x=a/2の交点(要は外心)のy座標は
(b^2+c^2-ab)/2c
全て有理数の計算なのでこのy座標も有理数となる。

849 :132人目の素数さん:2005/05/03(火) 01:41:18
有理点を端点とする線分の二等分線は傾きと切片が有理数となる.
よってそれらを連立させて交点を求めれば有理点になることが分かる.

850 :132人目の素数さん:2005/05/03(火) 07:19:51
>>845
aのx成分をAxなどと書く。また、(a*b)*cのx成分を{(a*b)*c}x などと書く。

{(a*b)*c}x = (AzBx-AxBz)Cz-(AxBy-AyBx)Cy
= AzBxCz+AyBxCy-(AxBzCz+AxByCy)
= (AxCx+AyCy+AzCz)Bx-(BxCx+ByCy+BzCz)Ax
= (a,c)Bx - (b,c)Ax
同様に {(a*b)*c}y = (a,c)By - (b,c)Ay , {(a*b)*c}z = (a,c)Bz - (b,c)Az
よって (a*b)*c=(a,c)b-(b,c)a

851 :132人目の素数さん:2005/05/03(火) 17:39:55
(-3,4)(4,5)(1,-4)の三点を通る円の方程式を求めよ。

よろしくお願いします

852 :132人目の素数さん:2005/05/03(火) 17:44:16
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< 宿題は自分で考えてから
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 質問しましょうよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



853 :132人目の素数さん:2005/05/03(火) 18:04:49
>>851
(-3-a)^2 +(4-b)^2=c^2
(4-a)^2 +(5-b)^2=c^2
(1-a)^2 +(-4-b)^2=c^2

この連立方程式を解け

854 :132人目の素数さん:2005/05/03(火) 21:03:52
>>851
7(1-2a) + (9-2b) = 0
3(5-2a) + 9(1-2b) = 0
4(-2-2a) -8(-2b) = 0

この連立方程式を解け

855 :132人目の素数さん:2005/05/03(火) 23:26:10
y=x^xlogx の導関数の解法を教えて栗

856 :132人目の素数さん:2005/05/03(火) 23:28:39
両辺のlogを取りましょうよ。
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< 宿題は自分で考えてから
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 質問しましょうよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i




857 :132人目の素数さん:2005/05/04(水) 00:24:43
y=x^{xlog(x)}=e^(x*{log(x)}^2) より、y'=x^{xlog(x)}*{log(x)(xlog(x)+2)}

858 :132人目の素数さん:2005/05/04(水) 00:28:17
謹んで訂正:
y'=x^{xlog(x)}*{log(x)(log(x)+2)}

859 :132人目の素数さん:2005/05/04(水) 08:03:09
>>857-858
(=゚ω゚)ノ ありがd

860 :132人目の素数さん:2005/05/04(水) 08:20:29
cos√x/√x 不定積分

861 :132人目の素数さん:2005/05/04(水) 08:24:02
x^m*exp(3x)のn回微分ってどうやって求めるのですか?

862 :132人目の素数さん:2005/05/04(水) 08:26:11
漸化式や数学的帰納法を使いましょう
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< 宿題は自分で考えてから
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 質問しましょうよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i



863 :132人目の素数さん:2005/05/04(水) 08:37:42
>>861
ライプニッツの公式を用いると、m>nならば
( x^m*exp(3x) )^(n)=納k=0,n] nCk*exp(3x)^(n-k)*(x^m)^(k)
m<nならば、(x^m)^(m+1)=0,(x^m)^(m+2)=0,・・・より、
( x^m*exp(3x) )^(n)=納k=0,m+1] nCk*exp(3x)^(n-k)*(x^m)^(k)

864 :132人目の素数さん:2005/05/04(水) 09:02:21
>>860
sin√x を微分してみよう。

865 :863:2005/05/04(水) 09:13:30
寝呆けてた、スマソ。
n>mの場合は不要ですた

866 :132人目の素数さん:2005/05/04(水) 09:44:42
高2です。三角関数についてなんですが、よろしくお願いします

θ=18°とするとき
1)cos3θ=sin2θ を示せ
2)sinθの値は?

という問題です…θが18°なので、5θ=90°になりますよね。
でもそれをどう使ったらいいのやら(´Д`;)お願いします…。

867 :(´∀`):2005/05/04(水) 09:51:31 ?
1)もできないの?
3θ+5θ = 90°だよね?

2)は,1)の式に三倍角の公式と二倍角の公式を代入する.

868 :132人目の素数さん:2005/05/04(水) 09:54:09
二等辺三角形ABC(∠B=∠C)で、辺AB上に点D、辺AC上に点Eがあり、点Dと点Eを結ぶ線が底辺BCに平行なとき、辺DB=辺ECといえる理由を教えてくださいm(_ _)m

869 :866:2005/05/04(水) 09:58:33
>>(´∀`)さん
あっ(2)で公式使うんですね?
一生懸命(1)でやってました…
えーと…θは18°なので、5θだけで、90°になっちゃうんです^^;

870 :132人目の素数さん:2005/05/04(水) 10:08:28
>>868
相似→辺の比が等しい。
>>869
3θ+2θ。そのくらい自分で考えろ。

871 :132人目の素数さん:2005/05/04(水) 10:11:59
          ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l    ____________
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  /教科書読みましょう。
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< その程度自分でやりましょう。
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 脳味噌ありますか?
   |l. l  ` ''丶  .. __  イ         |無いんですか?
   ヾ!        l.   ├ァ 、        \それなら学校辞めて土方しましょうよ。
          /ノ!   /  ` ‐- 、      ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i

872 :(´∀`):2005/05/04(水) 10:35:41 ?
>>869
あ、悪い.
3θ+2θ=90°の間違いです.
そうすると,なんかsin(90°-α)とかの公式がありましたよね.
あれ使います.覚えてますか?

873 :132人目の素数さん:2005/05/04(水) 10:50:57
870
あ(-_-#) ありがとうございます↓

874 :132人目の素数さん:2005/05/04(水) 12:22:03
(゚∀゚) ヤダ!
http://www.zukan-bouz.com/nanntai/tutuika/yariika.html

875 :132人目の素数さん:2005/05/04(水) 12:23:06
(゚A゚)ノ   誤爆スマンコ!

876 :132人目の素数さん:2005/05/04(水) 12:33:46
よろしくお願いします。
2xx+8xy+6yy-x+y-1を因数分解せよ。
xxx+yyy+3xxy+3xyy+2xx+2yy+4xy+x+yを因数分解せよ。

877 :132人目の素数さん:2005/05/04(水) 12:45:03
>>876
非可換な代数系なのか? 因数分解はできない形に見えるが。

878 :132人目の素数さん:2005/05/04(水) 12:45:03
自己解決しました。

879 :132人目の素数さん:2005/05/04(水) 12:49:56
>>876
(2x+2y+1)(x+3y-1)
(x+y)(x+y+1)^2

880 :132人目の素数さん:2005/05/04(水) 15:57:40
二つの円(x^2)+(y^2)-4=0, (x^2)+(y^2)-4x+2y-6=0
の二つの交点と点(1,2)を通る円の方程式を求めよ

よろしくお願いしますm(__)m

881 : ◆27Tn7FHaVY :2005/05/04(水) 16:00:17
求める円は、(x^2+y^2-4)+k(x^2+y^2-4x+2y-6)=0 とおける。

882 :132人目の素数さん:2005/05/04(水) 16:16:29
すいません…
どうして求める円は、一方の円の式にKをかけたものに
他方の円の式を足したもので表せるのか教えてください…

883 :132人目の素数さん:2005/05/04(水) 16:36:33
その表式が、k!=-1 で 円になることと、2つの円の交点を通る事は、自明でしょ?
交点とは、x^2+y^2-4=0 と x^2+y^2-4x+2y-6=0 が同時に成立する点なのだから。
後は、細かい論理を詰めればいいんじゃないの?
参考書にいくらでも載っていると思うけどな。さて、教科書にはあったかな?

884 :132人目の素数さん:2005/05/04(水) 16:38:37
>882
交点はkの値によらず、
0+k・0=0
となるから。

885 : ◆27Tn7FHaVY :2005/05/04(水) 16:47:18
>>883-884
ありがと

886 :132人目の素数さん:2005/05/04(水) 17:07:43
ありがとうございます。

887 :ロミオ:2005/05/04(水) 17:08:42
(X^3)-(9X^2)+24X-16E=0
を満たす三次行列Xを求めよ。って問題のやり方がわかりません。

888 :132人目の素数さん:2005/05/04(水) 17:10:11
「f(x)=x^3-ax+bが(x-1)^2で割り切れる時、定数a,bの値を求めよ」
f(1)=0 より -a+b+1=0…@
また、x^3-ax+bを(x-1)^2=x^2-2x+1で割った時の余りをRとし、
R=0から@と連立方程式を立てようと試みたところ、
R=-a+b+3=0というわけわからない連立方程式が出たので困ってます。
解は、@よりb=a-1とおき与式に代入し因数分解、という手順ですが、
私のやり方はどこに誤りがありますでしょうか?ご指摘の方宜しくお願いします。

889 :132人目の素数さん:2005/05/04(水) 17:26:51
f(x)=x^3-ax+b=(x+2)(x-1)^2 + {(3-a)x + (b-2)} より、余りがxに無関係に0になるから
恒等式の条件より、3-a=0 ⇔ a=3、 b-2=0 ⇔ b=2


890 :132人目の素数さん:2005/05/04(水) 17:34:46
>>889
その解はのってませんでした。ありがとうございます。

891 :132人目の素数さん:2005/05/04(水) 17:35:11
sage忘れました><

892 :132人目の素数さん:2005/05/04(水) 17:38:10
>>889
なるほど。恒等式でしたか;勉強になりました。

893 :132人目の素数さん:2005/05/04(水) 18:56:38
cos(sin^-1 3/5) の値

置換積分が苦手な漏れ…

894 :132人目の素数さん:2005/05/04(水) 19:01:59
>>893
          ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l    ____________
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  /教科書読みましょう。
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< その程度自分でやりましょう。
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 脳味噌ありますか?
   |l. l  ` ''丶  .. __  イ         |無いんですか?
   ヾ!        l.   ├ァ 、        \それなら学校辞めて土方しましょうよ。
          /ノ!   /  ` ‐- 、      ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i

895 :132人目の素数さん:2005/05/04(水) 19:04:45
>>893
図を描いてみよう。
........./|
...5/...|
.../......| 3
/)θ.|
~~~~~
4

sinθ=3/5
このときのcosθの値だから・・・


896 :132人目の素数さん:2005/05/04(水) 20:08:50
漸化式の問題ですが、お願いします。

a(1)=√3
a(n+1)={1+a(n)}/{1-a(n)}





897 :132人目の素数さん:2005/05/04(水) 20:24:16
>>896
a(n)=tanθ とおくと
a(n+1)=(1+tanθ)/(1-tanθ)=(cosθ+sinθ)/(cosθ-sinθ)
=√2sin(θ+π/4)/{√2cos(θ+π/4)}=tan(θ+π/4)

a(1)=√3=tan(π/3) だから
a(n)=tan{(π/3)+(n-1)*(π/4)}=tan{(nπ/4)+(π/12)}

898 :896:2005/05/04(水) 20:42:31
>>897
ありがとうございます。

899 :132人目の素数さん:2005/05/04(水) 20:45:31
a(1)=1
a(n+1)=a(n){a(n)+2}

これの一般項が分かりません。教えてください。

900 :132人目の素数さん:2005/05/04(水) 20:45:49
http://www.uploda.org/file/uporg89591.swf

この問題解ける人いますか?
なんで一マス減るんでしょう???
数学で解決できますか?

901 :132人目の素数さん:2005/05/04(水) 20:49:50
F(k)=coskθ÷(cosθ)^kとする
このとき Σ[k=1,n]F(k) を求めよ。

おねがいします。

902 :132人目の素数さん:2005/05/04(水) 20:50:19
>>900
http://www.geocities.co.jp/CollegeLife-Club/7442/math/index.html

903 :132人目の素数さん:2005/05/04(水) 21:00:17
>>900
トリックは一番上の頂点から左に三ついったマスにマスと斜辺に囲まれた小さい三角があるだろ。
そこをじっと見てろ。


904 :132人目の素数さん:2005/05/04(水) 21:17:16
>>899
a(n+1)=a(n){a(n)+2} ⇔ a(n+1)+1={a(n)+1}^2
これより
a(n)+1={a(n-1)+1}^2=・・・={a(1)+1}^{2^(n-1)}
よって
a(n) = 2^{2^(n-1)} - 1

905 :132人目の素数さん:2005/05/04(水) 21:24:03
>>904
おお、なるほど
分かりました!!

906 :132人目の素数さん:2005/05/04(水) 21:31:33 ?
球の体積が毎病25cm^3で増大しています。
球の半径が2cmの瞬間、球の半径の変化の割合を調べよ。
答えは 25/16π らしいのですが、ヘタレで求め方が分かりません。
ご教授下さい。お願いします。ペコリ(o_ _)o))

907 :132人目の素数さん:2005/05/04(水) 21:36:38
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< うるせーよ
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 二度と来るな・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


908 :132人目の素数さん:2005/05/04(水) 21:39:53
>>906
球の体積をV、半径をr とする。
球の体積の増加から dV/dt=(dV/dr)(dr/dt)=25
球の半径が2cmの瞬間,dV/dr=4π*2^2 だから
球の半径の変化の割合 dr/dt=25/(16π)

909 :Mozilla in X11:2005/05/04(水) 21:42:00
$dV/dt = 25$ , $V = 4\pi r^3 / 3$ より、
$dV/dt = 4\pi r^2 \cdot dr/dt = 25$
この式の中辺に $r = 2$ を代入して、$dr/dt_{r = 2}$ を求めよ。

910 :906:2005/05/04(水) 21:45:27 ?
>>908
納得しました。ありがとうございました!!

911 :906:2005/05/04(水) 21:49:38 ?
>>907氏も回答してくださってようですね。
ありがとうございます。
差し支えなければ記号の読み方をまとめたサイト?などを
ご存知でしたらお教えくださいませ!!

912 :132人目の素数さん:2005/05/04(水) 21:59:36
25t=V=4πr^3/3 ⇔ 75t=4πr^3、両辺をtについて微分すると、
75=12πr^2(dr/dt) ⇔ dr/dt=25/(4πr^2) ここでt=2とすると、
半径がrが2になった瞬間の増加率が求まる、

913 :132人目の素数さん:2005/05/04(水) 22:03:04
訂正:
25t=V=4πr^3/3 ⇔ 75t=4πr^3、両辺をtについて微分すると、
75=12πr^2(dr/dt) ⇔ dr/dt=25/(4πr^2) ここでr=2とすると、
半径rが2になった瞬間の変化の割合が求まる、

914 :906:2005/05/04(水) 22:08:29 ?
>>912-913氏もありがとうございました!!!(^-^)ノ

915 :132人目の素数さん:2005/05/04(水) 22:29:04
lim[x→0]xe^x/1-e^x の極限値

∩∩
 (´A`)もうわかんねーYO
⊂|  |⊃⌒|⌒|
 ノ ゝ   ̄ ̄


916 :132人目の素数さん:2005/05/04(水) 22:30:17
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i< ロピタルを使いましょう
  iハ l  (.´ヽ     _   ./    ,' ,' '  | ロピタルはいいですよ・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


917 :132人目の素数さん:2005/05/04(水) 22:38:20 ?
y=x^3+x のとき、y の逆関数をz とする。

z'(2)を求めよ。

答え:1/4 ・・なんで??

918 :132人目の素数さん:2005/05/04(水) 22:41:27
逆関数の微分

919 :917:2005/05/04(水) 23:04:45 ?
多分自己解決です。。

公式集を見たら、
「関数f と f^(-1) とでは定義域と値域が入れ替わる。」
とあるので、
元の関数で (x,y)=(1,2) というのは逆関数では (x,y)=(2,1) という風に
値が入れ替わるのでしょう・・・

ややこしいですね・・・

920 :132人目の素数さん:2005/05/04(水) 23:52:24
点(1,2)を通り、x軸とy軸の両方に接する円の方程式を求めよ

またよろしくお願いします

921 :132人目の素数さん:2005/05/04(水) 23:56:24
>>915
ろぴたるで-1

922 :132人目の素数さん:2005/05/05(木) 00:04:35
>>920
半径をr(>0)とすると、明らかに円は第一象限内にあるから、(x-r)^2 + (y-r)^2 = r^2 と書ける。
これが点(1,2)を通るから、(1-r)^2 + (2-r)^2 = r^2 ⇔ (r-1)(r-5)=0、r=1, 5
よって、(x-1)^2 + (y-1)^2 = 1、(x-5)^2 + (y-5)^2 = 25


923 :132人目の素数さん:2005/05/05(木) 00:15:42
ロピタルを使わないとどうなるの?

924 :132人目の素数さん:2005/05/05(木) 00:18:40
(e^x -1)/x → 1

925 :132人目の素数さん:2005/05/05(木) 00:48:15
x→0のとき、1-e^x→0 だから、-(1-e^x)=h とおくと、h→0、
また e^x=1+h、x=log(1+h) より、lim[x→0] xe^x/(1-e^x)
=lim[h→0] (1+h)*log(1+h)/(-h) = lim[h→0] -(1/h)*(1+h)*log(1+h)
=lim[h→0] -(1+h)*log{(1+h)^(1/h)} = -1

926 :132人目の素数さん:2005/05/05(木) 01:15:42
cosA+cosB=sinCの関係が成り立つとき
この三角形はどんな形か

927 :132人目の素数さん:2005/05/05(木) 01:20:29
これの因数分解お願いします。

(a+b)(b+c)(c+a)+abc

928 :132人目の素数さん:2005/05/05(木) 01:44:25
どなたか教えてください。
娘から質問され、答えられずに困ってます。
問題
果物が100個あります。
イチゴはリンゴの3倍あり、リンゴはメロンより10個多いです。
さてそれぞれいくつずつあるでしょう。
計算式も書きなさい。
という具合です。
中卒親父にはちょっと難しいです。どなたか親切な方、よろしくです

929 :132人目の素数さん:2005/05/05(木) 01:45:01
マルチはお止めください

930 :132人目の素数さん:2005/05/05(木) 01:57:01
すいません。。。


931 :132人目の素数さん:2005/05/05(木) 02:13:34
A+B+C=π より、cosA+cosB=sin(C) ⇔ cosA+cosB-2sin(C/2)cos(C/2)=0
⇔ 2cos((A+B)/2)cos((A-B)/2)-2sin(C/2)cos(C/2)=0
⇔ 2sin(C/2){cos((A-B)/2)-cos(C/2)}=4sin(C/2)sin(π/4-B/2)sin(π/4-A/2)=0
sin(C/2)>0、sin(π/4-B/2)=0 ⇔ B=π/2、sin(π/4-A/2)=0 ⇔ A=π/2
よって∠Aか∠Bのどちらか一方が直角の三角形



932 :132人目の素数さん:2005/05/05(木) 04:31:31
>>925
一行で終わるのに…

933 :132人目の素数さん:2005/05/05(木) 06:17:24
>>887
X(X^2-9X+24E)=16E
X^(-1) = (X^2-9X+24E)/16

934 :132人目の素数さん:2005/05/05(木) 06:38:56
>>927
(a+b)(b+c)(c+a)+abc = (b+c)a^2 + {bc+(b+c)^2}a + bc(b+c)
= {(b+c)a+bc}{a+(b+c)}

935 :132人目の素数さん:2005/05/05(木) 10:34:15
>>901
無理だろ

936 :132人目の素数さん:2005/05/05(木) 16:03:32
点(4,2)から円(x^2)+(y^2)=4に引いた接線の
方程式と接点の座標を求めよ。

よろしくお願いします

937 :132人目の素数さん:2005/05/05(木) 16:13:45
>>936
まず明らかに直線 y=2 は接線で接点は (0,2)
もう一本の接線・接点は、これを円の中心と点(4,2)を通る直線に関して折り返せばよい。

938 :132人目の素数さん:2005/05/05(木) 16:53:33
ありがとうございます

939 :132人目の素数さん:2005/05/05(木) 17:05:14
すみません、936の問題で、
(-2,4)とx^2+y^2=10という値が与えられて、
接線が求められない場合はどうすればいいでしょうか。

940 :132人目の素数さん:2005/05/05(木) 17:49:49
>>939
いいたい事がよくわからんが
単なる計算ミスでは?

941 :132人目の素数さん:2005/05/05(木) 18:02:12
分かりにくくてすいません、
>>936の問題では、円の半径とy座標が一致していたため
明らかに一方の接線はy=2で接点は(0,2)とおくことが出来ましたが、

次の問題は点(-2,4)から円x^2+y^2=10に引いた接線の
方程式と接点の座標を求めよ。

というものだったので、半径と座標の値が一致していないため、
接線の求め方が分からないということです。

942 :132人目の素数さん:2005/05/05(木) 18:14:30
>>941
接点を条件付の2パラメータで置いて円の接線の公式から連立方程式を作るとか、
求める接線の式を2パラメータで置いて2次関数の特徴を活かして連立方程式を作るとか。

943 :132人目の素数さん:2005/05/05(木) 18:20:28
2パラメータという言葉が分かりません・・・
具体的にどういう風に連立方程式を立てたらいいか教えてください・・・

944 :132人目の素数さん:2005/05/05(木) 21:40:44
>>901,935
 ここら辺↓に回答

さくらスレ163
 http://science3.2ch.net/test/read.cgi/math/1114465980/515-517,620

945 :132人目の素数さん:2005/05/05(木) 21:50:49
>>925
(´A`) 多謝♪


946 :132人目の素数さん:2005/05/06(金) 02:17:25
>>941
点(-2,4)から円x^2+y^2=10に引いた接線の
方程式と接点の座標を求めよ。

O(0,0),A(-2,4)とする。また接点をP,Qとする。(Pのx座標<Qのx座標)
∠OAP=∠OBP=90°より、4点O,A,P,Qは線分OPを直径とする円周上にある。
その円周上の任意の点をR(x,y)とおくと、RO⊥RPであるから、
RO↑・RP↑=0より、x(x+2)+y(y-4)=0。
直線PQの方程式は2つの円x^2+y^2=10,x(x+2)+y(y-4)=0の共通弦であるから、
2式の差をとってx-2y+5=0。
円:x^2+y^2=10と直線PQ:x-2y+5=0の交点を計算すれば、P(-3,1),Q(1,3)
点Pにおける接線は直線OPと垂直だからその傾きは3。
よって点Pにおける接線はy-1=3(x+3) ∴y=3x+10
点Qにおける接線も同様に求めるとy-3=-(1/3)(x-1) ∴y=-(1/3)x+10/3

947 :132人目の素数さん:2005/05/06(金) 02:21:56
>>946の訂正

誤 ∠OAP=∠OBP=90°より

正 ∠OPA=∠OQA=90°より

948 :946:2005/05/06(金) 02:24:39
つーか間違え多すぎたため全面改装

点(-2,4)から円x^2+y^2=10に引いた接線の
方程式と接点の座標を求めよ。

O(0,0),A(-2,4)とする。また接点をP,Qとする。(Pのx座標<Qのx座標)
∠OPA=∠OQA=90°より、4点O,A,P,Qは線分OAを直径とする円周上にある。
その円周上の任意の点をR(x,y)とおくと、RO⊥RAであるから、
RO↑・RA↑=0より、x(x+2)+y(y-4)=0。
直線PQの方程式は2つの円x^2+y^2=10,x(x+2)+y(y-4)=0の共通弦であるから、
2式の差をとってx-2y+5=0。
円:x^2+y^2=10と直線PQ:x-2y+5=0の交点を計算すれば、P(-3,1),Q(1,3)
点Pにおける接線は直線OPと垂直だからその傾きは3。
よって点Pにおける接線はy-1=3(x+3) ∴y=3x+10
点Qにおける接線も同様に求めるとy-3=-(1/3)(x-1) ∴y=-(1/3)x+10/3

949 :132人目の素数さん:2005/05/06(金) 04:06:58
>>941
まあ、円と接線なら
点と直線の距離を利用すると
計算量が少なくて済むわけだがな。

一言断った後、求める接線を
y-4=m(x-2)とおいて整理。

点と直線の距離の公式に
原点と接線の式をぶち込む。

両辺平方でもなんでも好きなようにやれば
mが求まってウマー。

950 :949:2005/05/06(金) 04:16:20
おっと、見間違い。
点(-2,4)だったのな。

y-4=m(x+2)だ。

ちなみに、中途半端に計算力のある奴は
接線の式を円の式に代入してD=0を使いたがるが
やめた方がヨロシ。

計算量の多さで挫折するかケアレスミスするか、だから。

951 :944:2005/05/06(金) 05:50:00
>901,935
 a = exp(iθ) / (cosθ) = 1 + i(tanθ) ≠ 1 (θ≠nπ) とおくと F(k) = Re(a^k).
 Σ[k=1,n] F(k) = Re{ Σ[k=1,n] a^k } = Re{(a^(n+1) -a)/(a-1)} = Im[a^(n+1) -a]/(tanθ)
 = {sin((n+1)θ)/(cosθ)^n - sinθ} / (sinθ) = ・・・

952 :132人目の素数さん:2005/05/06(金) 07:32:41
>>946-949
ありがとうございます(つД`)

953 :132人目の素数さん:2005/05/06(金) 07:37:24
あっ、>>950も。同一人物だから構わないかもしれませんが

954 :132人目の素数さん:2005/05/06(金) 20:29:51
http://science3.2ch.net/test/read.cgi/math/1114950398/
の448です…どれだけ調べてもさっぱり分からないです…
マルチになってしまうのですがどなたか教えて下さい…

955 : ◆27Tn7FHaVY :2005/05/06(金) 20:32:37
a,b,cどの文字についても2次式であることを確かめる
そこで、まずaについて整理する

956 :132人目の素数さん:2005/05/06(金) 20:50:09
a^2(b-c)+b^2(c-a)+c^2(a-b)=(b-c)a^2 + (c^2-b^2)a + bc(b-c)
=(b-c)a^2 - (b+c)(b-c)a + bc(b-c) = (b-c)(a^2-(b+c)a+bc)=(b-c)(a-b)(a-c)

957 :132人目の素数さん:2005/05/06(金) 21:47:58
四十二日。


958 :132人目の素数さん:2005/05/06(金) 21:52:28
>>955-956
ものすっごく参考になりました。
解説・式ともに分かりやすかったです。
ほんとありがとうございました。
規則的な式に惑わされていたようです。

959 :132人目の素数さん:2005/05/07(土) 22:40:02
質問なのですが、中括弧や大括弧は使わないと減点か不正解ですか?

960 : ◆27Tn7FHaVY :2005/05/07(土) 22:47:02
式の値が変わるなら当然そう

961 :132人目の素数さん:2005/05/08(日) 00:35:52
例えば手書きでも>>956のような括弧の使い方をしてもいいのでしょうか?

962 :961:2005/05/08(日) 00:36:35
(値が変わらないからいいのかな?と思うのですが)

963 : ◆27Tn7FHaVY :2005/05/08(日) 00:44:03
2重括弧のことかいな?さて、どうかな・・・
減点されたら、4重5重はどうするんですか?とか聞くとか

964 :961:2005/05/08(日) 00:55:03
そうですよね、やっぱりはっきりとは言えないですよね…
自分、括弧がどうなっていくかの予想が下手で、
いつも普通の括弧を消しゴムで消して中括弧に直してるんですよ
でも括弧の分別をしなければそんなわずらわしさもなくなりますし、
よほど複雑にならないと括弧が見えてこないってこともないですし。
ありがとうございました。

965 :132人目の素数さん:2005/05/08(日) 00:56:21
全部 丸括弧でいいよ

966 : ◆27Tn7FHaVY :2005/05/08(日) 00:57:53
全部普通の括弧でもいいけど、×にする人には
>>963って言ってみたらってこと

967 :132人目の素数さん:2005/05/08(日) 01:14:49
右と左のかっこの種類が合ってればなんでもいいよ、

968 :961:2005/05/08(日) 03:20:27
親切にありがとうございました〜

969 :132人目の素数さん:2005/05/08(日) 03:44:36
x=2の時
lim [x]=1
X→2-0
 なぜこれになるのかよくわかりません。そもそもガウスとは何でしょうか?
教科書レベルですが教えてもらえませんか 

970 :132人目の素数さん:2005/05/08(日) 03:56:00
>>969
ガウス記号でググれ。

でもって、「x=2の時」「X→2-0」つーのが意味不明。
全角半角の混用については許すにしろ
右極限、左極限あたりについては知っとかんとなあ。

971 :132人目の素数さん:2005/05/08(日) 14:06:47
すみません。間違えました。
x→0-2です。

972 :132人目の素数さん:2005/05/08(日) 17:05:29
>>971
ほんとに?

973 :132人目の素数さん:2005/05/08(日) 19:59:48
X→2-0 で
2のマイナス方向から近づくんでしょ?

974 :970:2005/05/09(月) 02:54:08
そもそも、X→2-0 つーことは
「x=2の時」はあり得ない、と何度言えば。

で、ガウス記号の意味は調べたのか?

975 :132人目の素数さん:2005/05/09(月) 13:51:44
floor と同義でつか?

976 :132人目の素数さん:2005/05/09(月) 16:15:00
たびたび失礼します。おかげさまでガウスの意味は自己解決しました。
が、やはり

関数f(x)=[x]のx=2における連続性を調べるとき

 lim[x]=1, lim[x]=2
x→2-0  x→2+0

であるから、lim[x] は存在しない。よって関数f(x)=[x]は、x=2で連続でない
       x→2

とゆうことなんですが、lim[x]=1 これはどうゆう事でしょうか
x→2-0




977 :132人目の素数さん:2005/05/09(月) 16:52:58
xが2より極僅かに小さい訳だから、[x]=1になる、

978 :132人目の素数さん:2005/05/09(月) 20:14:08
>>976
[1.9] = 1
[1.99] = 1
[1.999] = 1
[1.9999] = 1


979 :132人目の素数さん:2005/05/09(月) 20:40:33
以下に示しているのは大学のレポート問題なんですが、教授の言ってる事がさっぱり分かりません。教科書もなくどうしようもない状態です。
通りすがりの良心的な方、この問題の解き方を教えていただけないでしょうか?

--------------------
S={0,1}上の演算
fi(0≦i≦15)について、
(i)可換なもの
(ii)0が単位元であるもの
(iii)1が単位元であるもの
(iv)半群であるもの
(v)monoidであるもの
(vi)群であるもの
:を決定せよ.
--------------------


980 :132人目の素数さん:2005/05/09(月) 20:52:54
>>979
演算の定義は?

981 :132人目の素数さん:2005/05/09(月) 20:59:08
>>979
その情報だけでは決定できません。

982 :132人目の素数さん:2005/05/09(月) 21:16:22
お返事ありがとうございます。
なんか番号が書いてあったのでそれを辿って書いてみます。
--------------------
#X,#Y<∞のとき
#Map(X,Y)=(#Y)^(#X),
特に#Map(X,{0,1})=2^(#X)=#P(X)
--------------------
#X=|X|:=「Xの元の数」

983 :132人目の素数さん:2005/05/09(月) 21:47:58
四十五日。


984 :132人目の素数さん:2005/05/09(月) 22:45:26
すいません大学の課題で、
3,2,4,5の順で入力された場合に
9,12,16,23の順で出力される時の差分方程式を見つけろ
と言われたんですが、
4時間頭を捻ってても全然分かりません。
ちなみに掛け算と足し算しか使わないそうです。
解き方だけで結構なので誰か教えて頂けないですか?


985 :132人目の素数さん:2005/05/09(月) 22:55:23
(1)
x 軸上を運動する物体の位置 x が,次のように時間の関数として表されているとき,速度 v ,加速度 a を求めよ.
(1) x = 2 sin 4t +5t
  v = [ ア ] cos 4t + [ イ ]
  a = [ ウ ] sin 4t
(2) x = 3e-2t+2
  v = [ エ ] × e-2t
  a = [ オ ] × e-2t

(2)
x 軸上の x = 2 にある物体が,t = 0 から初速度= 1,加速度 a =−4 の等加速度運動をはじめた.このとき t > 0 における物体の位置 x を時間 t の関数で表せ.
a =−4 を時間で積分して速度 v を求めると,v = [ ア ] t +const.
t = 0 で,v = [ イ ] なので,const. = [ イ ]
したがって,v = [ ア ] t + [ イ ]
次にこの v を時間で積分して位置 x を求めると,
a = [ ウ ] t 2+ [ エ ] t +const.
t = 0 で,x = [ オ ] なので,const. = [ オ ]
したがって,x = [ ウ ] t 2+ [ エ ] t + [ オ ]

(3)
x - y 平面内を,角速度2[rad/s],半径2[m]で原点を中心とする等速円運動する物体がある.
この物体が,t = 0 で x 軸上( 2,0 ) にあるとすると,物体の位置は,
x = [ ア ] [ イ ] 2t
y = [ ウ ] [ エ ] 2t
とかける.
( [ ア ] , [ ウ ] には数字を, [ イ ] , [ エ ] には sin,cos のいづれかを入れよ)
加速度の x 成分 ax ,y 成分 ay は,x,y をそれぞれ時間 t で2回微分すれば得られる.
すなわち,ax =− [ オ ] [ カ ] 2t、ay =− [ キ ] [ ク ] 2tとかける.
( [ オ ] , [ キ ] には数字を, [ カ ] , [ ク ] には sin,cos のいずれかを入れよ)
加速度の大きさは,= [ ケ ] となる.

[ ]に当てはまる数を教えてください。

986 :132人目の素数さん:2005/05/09(月) 22:57:20
すげ。読む騎士ね

987 :132人目の素数さん:2005/05/09(月) 23:06:22
>>984
事故解決

(前回の入力+今回の入力)*2+今回の入力でいけました

988 :132人目の素数さん:2005/05/09(月) 23:06:23
分からない問題はここに書いてね208
http://science3.2ch.net/test/read.cgi/math/1115647553/


989 :132人目の素数さん:2005/05/09(月) 23:09:43
>>985
(1)
(1) x = 2 sin 4t +5t
  v = 8 cos 4t + 5
  a = -32 sin 4t
(2) x = 3e-2t+2
  v = -6 × e-2t
  a = 12 × e-2t


990 :132人目の素数さん:2005/05/09(月) 23:12:41
1000取り

991 :132人目の素数さん:2005/05/09(月) 23:13:04
991

992 :132人目の素数さん:2005/05/09(月) 23:14:02


993 :132人目の素数さん:2005/05/09(月) 23:44:43
           ...,、 -  、
      ,、 '  ヾ 、    丶,、 -、
     /    ヽ ヽ  \\:::::ゝ
 /ヽ/   i  i    ヽ .__.ヽ ヽ::::ヽ
 ヽ:::::l i.  l  ト  ヽ  ヽ .___..ヽ 丶::ゝ
 r:::::イ/ l  l.  i ヽ  \ \/ノノハ  ヽ
 l:/ /l l.  l  i  ヽ'"´__ヽ_ヽリ }. ',  ',
 'l. i ト l  レ'__    '"i:::::i゙〉l^ヾ  |.i. l
. l l lミ l /r'!:::ヽ    '‐┘ .} /  i l l  / ̄ ̄ ̄ ̄ ̄ ̄ ̄
  l l l.ヾlヽ ゝヾ:ノ   ,     !'"   i i/ i<  物理ですか
  iハ l  (.´ヽ     _   ./    ,' ,' '  | 教科書を読みましょう・・・・・
   |l. l  ` ''丶  .. __  イ          \_______
   ヾ!        l.   ├ァ 、
          /ノ!   /  ` ‐- 、
         / ヾ_   /     ,,;'' /:i
        /,,  ',. `  /    ,,;'''/:.:.i


994 :132人目の素数さん:2005/05/09(月) 23:56:24
埋め

995 :132人目の素数さん:2005/05/10(火) 00:08:58


996 :132人目の素数さん:2005/05/10(火) 01:09:26
>988
さくらスレに統合じゃなかったのかよ

997 :132人目の素数さん:2005/05/10(火) 01:56:34
>>985
(3)
x=2cos2t
y=2sin2t
ax=-8cos2t
ay=-8sin2t
|a|=√(ax^2 +ay^2)
=8[m/s^2]

998 :132人目の素数さん:2005/05/10(火) 02:00:13
>>985
(2)
v=-4t+c
v=1
const.=1
v=-4t+1
x=-2t^2 +t+const.
x=2
const.=2
x=-2t^2 +t+2

999 :132人目の素数さん:2005/05/10(火) 02:01:21


1000 :132人目の素数さん:2005/05/10(火) 02:04:35
1000ゲッツ

1001 :1001:Over 1000 Thread
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。

248 KB
★スマホ版★ 掲示板に戻る 全部 前100 次100 最新50

read.cgi ver 05.02.02 2014/06/23 Mango Mangüé ★
FOX ★ DSO(Dynamic Shared Object)